Improving the Extended Z-Buffer

Z-Trace, Time-Trace and Animation

I. BLASQUEZ and J.-F. POIRAUDEAU
LICN-IUT, Université de LIMOGES
Allée André Maurois, 87065 LIMOGES Cedex, FRANCE

E-mail : poiraudeau@unilim.fr

Keywords: extended z-buffer, geometric
modelling, animation, performance study, NC
milling simulation.

Abstract

In this paper, we propose an improvement of the
extended z-buffer. This object representation
is well adapted to the NC machining simula-
tion as practiced in the workshops. However,
it does not keep in memory the history of the
construction of the workpiece. Indeed, to go
back in the visualization process, it is necessary
to replay the simulation from the first stage of
the machining. We propose an algorithm to
obtain an interactive simulation by using two
new data structures called traces : one trace in
a specified viewing direction, the other in time.
The Z-trace or complete trace allows the part to
be modelized again at any given moment. The
time-trace or fast trace only displays a specific
moment of the simulation but the setting up of
an animation is possible because this trace can
be consulted quickly. The experimental evalu-
ation shows our method is compatible with the
memory capacity and the processing speed of
standard PC hardware, thus to workshops use.

1 Introduction

NC Milling Simulation is practiced in the work-
shops with the standard PC graphics hardware.
With the simulation, the machine operator tries
to find out the errors which may appear during
a real machining. He needs to know where,
when and how these errors appear so as to
measure their impact and thus find adequate
solutions. The best way of achieving this is to
perform an interactive simulation where the op-
erator can visualize not only the finished part
but also the different phases of the machining.
In order to follow the actual material removal
and to visualize a specific moment of the ma-
chining, two possibilities are available. It is first
possible to execute again the simulation from
the beginning to the chosen moment, however,
this is rather time consuming. The second so-
lution consists in gluing together the virtual
part and chips obtained and memorized during
the simulation. To visualize faster a specific
moment of the machining, we choose to focus

on the second solution which allows the differ-
ent machining phases to be stored in two data
structures, and we introduce the notion of trace
in the extended z-buffer. An animation is done
thanks to a time-trace or fast trace which makes
it possible to go back very quickly to a specific
moment of the simulation. To obtain an inter-
active simulation and to enable the operator to
correct the errors of the program, we propose
a complete trace which allows the part to be
modelized at any given moment, the simulation
can then continue from a modified part. The
originality of our work lies in this dual point of
view : one trace in a specified viewing direction,
the other in time.

2 Machining simulation with the
extended z-buffer technique

The complete machining of a part involves a
sequence of toolpaths. Each toolpath is charac-
terized by the way the tool center moves (linear
or circular interpolation) and by the position-
ing in space (starting point and end point) The
simulation consists in following the movement
of the tool by determining the volume of mate-
rial removed from the part by the tool during
a toolpath. To obtain a realistic simulation,
we choose a “continuous” removal of material.
The toolpath must be discretized into elemen-
tary positions representing the different posi-
tions of the tool center. The different “stages”
of the machining simulation are defined by the
successive elementary positions of the tool cen-
ter. These elementary positions are obtained
by generalizing the Bresenham’s algorithm in
a 3D space (3D DDA). The bigger the chosen
resolution, the more numerous the positions.

To evaluate the volume removal during the
simulation, a calculation of volume intersection
of the part with each position of the tool center
is obtained by using boolean operations, such
as subtraction when milling. Complete machin-
ing consists of many thousand tool positions.
Intersection calculations are more and more nu-
merous, so the computational cost is intensive
and time-consuming. During the simulation,
a graphical representation is displayed. Sev-
eral methods have already been developed in
the field of machining simulation ; two main

20 : NearZ of the material appearing at stage i
Z1: FarZ of the material appearing at stage |
X : no deletion stage

7222} waeria
L] ool
Case 1: creation of adexel
Z0 Z1 Z0 Z1
W | |
i j creation
X X deletion
2022 73 Z1 z0z2 73 71
. . 11 | |
in n j credtion
X X X X deletion
Case 3 : modification of adexel (NearZ)
Z0 z1 20 z1
Wi | |
_ i j creation
X X deletion
z2 71 Z0 z2 71
_ A, | ||
i n j creation
n X X deletion

Case 2 : deletion of adexel

z0 Z1 Z0 Z1
‘IWF i j creation
X X deletion

Z0 Z1
i j creation
n N deletion

Case 4 : modification of adexel (FarZ)

Z0 Z1 Z0 Z1
g
i j creation
X X deletion
20272 70272 Z1
_ || \
in j creation
X X N deletion

Figure 1: Boolean operations between two dexels at stage n.

categories can be distinguished : the methods
based on 3 D models like the CSG method and
the B-Rep which both require at least an O(n?)
execution time [1], and the methods based on
image space such as the extended z-buffer [2]
and the Ray-Representation [3]. In this paper,
we focus on the extended z-buffer technique.
Van Hook was the first scientist to fix a view
point in the image space and to define an ex-
tended z-buffer which contains depth elements,
called dexels. A sorted list of dexels is asso-
ciated with each pixel. A dexel represents a
rectangular solid and corresponds to a part of
the block behind a pixel for a fixed view point.
With the extended z-buffer, an object can be
displayed in a specified viewing direction [4].
The part and the tool are also represented by
extended z-buffers. When machining, we work
on the extended z-buffer data structure of the
part, because only the tool removes material
from the part. The boolean operations require
two extended z-buffers [5]. At each elementary
position the extended z-buffer of the part and
the extended z-buffer of the tool have to be
compared dexel by dexel. As a lists of dex-
els is associated with each pixel, a dexel can
be interpreted geometrically as a segment of
a given ray in the specified viewing direction.

With the extended z-buffer technique, boolean
subtraction operations can be simply performed
on one-dimensional line segment intersections.
The extended z-buffer takes an expected time
of O(n) [1]. A dexel contains graphic, spa-
tial and modeling information about its near
depth value (NearZ), its far depth value (FarZ),
its color and a pointer to the following dexel.
The material is bounded by the NearZ and the
FarZ. Algorithmically, the comparison between
the different extended z-buffers is performed by
operations on sorted lists. We focus on two
dimensions : the depth in the specified viewing
direction and the time.

3 The z-trace or complete trace

For a given stage, it is possible to recreate a
scene identical to the scene performed during
the machining simulation thanks to the z-trace.
The data of the trace are defined when the
extended z-buffer is updated during the simula-
tion. It is then necessary to define an algorithm
using these data.

3.1 Characteristics of the z-trace.

The basic element of the z-trace, called Z-
element, is derived from the dexel structure.

However, it contains two supplementary pieces
of data which define the moment when a Z ap-
pears in the trace (creation stage) and when
it disappears (disappearing stage). For each Z
of the extended z-buffer (both for a NearZ or
for a FarZ), a Z-element is defined in the trace.
The Z-element contains the following informa-
tion : the value, the color, the creation stage,
the deletion stage and a pointer to the follow-
ing element. A list of Z-elements is associated
with each pixel on the image. As the extended
z-buffer does not have any memory, the dexels
are modified, even deleted, when material is re-
moved. To show that a Z-element is no longer
present in the buffer, it is necessary to use in
the trace a piece of data which can memorize
the deletion of the extended z-buffer. This is
the deletion stage.

3.2 Setting-up of the z-trace.
3.2.1 Initialization

The initial part is described by the z-trace cre-
ated during the initialization (stage 0).

3.2.2 Updating

The trace can be updated by studying the dif-
ferent boolean operations between the two ex-
tended z-buffers presented in figure 1. For a
stage n of the simulation, a dexel of the part is
compared to a dexel of the tool. The material
is bounded by a NearZ (Z0) which appears at
a stage ¢ of the simulation and by a FarZ (Z1)
which is created at a stage j of the simulation.
Stages i and j take place at any time before the
present stage n. The z-trace is built while the
extended z-buffer is modified.

Creation of a dexel (case 1 in figure 1).
When a new dexel is created in the extended
z-buffer, two new Z-values appear. This ap-
pearance has repercussions on the z-trace : two
new Z-elements are created. They are sorted
in a list according to the increasing Z-values.
Information such as Z-value and the creation
stage must be updated.

Deletion of a dexel (case 2 in figure 1).
When a dexel is deleted from the extended z-
buffer, the information about this dexel is lost
for the extended z-buffer. The z-trace must
keep in memory all the operations performed
on the extended z-buffer. The deletion of the
dexel involves the updating of the deletion stage
in the trace.

Modification of a dexel (cases 3 and 4 in
figure 1). The front of a dexel can be reduced
(case 3), then the value of its NearZ is modified.
The back of a dexel can be reduced (case 4),
then the value of its FarZ is modified. In both

cases the trace undergoes two modifications :
the updating of the Z-element already present
in the trace (the deletion stage is updated), and
the creation of a new Z-element whose value,
color and creation stage are known.

Thanks to this analysis, it is possible to infer
the following rules :

Rule 1. In the z-trace, all the modifications of
the extended z-buffer are listed.

Rule 2. If a dexel (i.e. two new values of Z)
is put into the extended z-buffer, then two Z-
elements are created in the trace.

Rule 3. If a dexel (i.e. two new values of Z)
is deleted in the extended z-buffer, then two
Z-elements are updated in the trace.

Rule 4. If and only if a NearZ is modified in
the extended z-buffer, then only one Z-element
is added and only one other is updated in the
trace.

Rule 5. If and only if a FarZ is modified in
the extended z-buffer, then only one Z-element
is added and only one other is updated in the
trace.

3.3 Reconstruction of the scene at stage n

The extended z-buffer is going to be recon-
structed as it was at stage n of the simulation,
starting from the z-trace (figure 2a).

1. It is first necessary to select the Z-
elements (figure 2b) that verify the follow-
ing inequalities :

(creation stage < stage n) AND
(deletion stage > stage n)

A list ordered according to the increasing
7 is obtained in which the NearZ and the
FarZ are alternated. According to rule 4
if the deletion stage of a single NearZ is
updated in the trace, then a new NearZ
is created. Thus if the extended z-buffer
is constructed from the trace, a Z ordered
list where a NearZ follows a FarZ is always
obtained. The same is true with rule 5 and
FarZ. Rules 2 and 3 also show that if two
elements of the trace are modified or cre-
ated, the result is necessarily a NearZ or
a FarZ, which maintains the alternation
between the NearZ and the FarZ.

2. Secondly, it is necessary to pair up Z-
elements (figure 2c¢). They make up a
dexel whose NearZ takes the value of the
first Z-element, and whose FarZ takes the
value of the second Z-element.

3. Finally, the extended z-buffer is obtained
by linking the dexels.

4 Time-trace or fast trace

For a given stage, it is possible to display a

a) Complete trace

Co C1 C2 C3 ¢4 color

L L L L L Z

Z1 zZ3 724 75 Z2

1 2 2 3 1 creation
5 5 3 X X deletion

b) Stage n=3: creation <=3 and deletion >3

CoO c1 C3 C4 color
. . L L z
Z1 Z3 75 Z2

¢) Pair up of the Z-elements
‘ c0o a ‘ ‘ c3 c4 ‘ color
L L L L Z
Z1 Z3 z5 Z2

NearZ FarZ NearZz FarZ
d) Link between the dexels

NearZz |FarZ C NearZ |FarZ C

Z1 Z3 C1 Z5 z2 C4

Figure 2: Reconstruction of the scene at stage n = 3.

scene thanks to the time-trace. The data of the
trace are defined when the extended z-buffer
is updated. It is then necessary to define an
algorithm using these data. The z-trace and
the time-trace are totally independent.

4.1 Characteristics of the time-trace.

With the extended z-buffer, the direction of
view is along the increasing Z-values. When a
pixel is displayed, it is necessary to consider the
last Z of the extended z-buffer (it is therefore a
FarZ).

Rule 6. The pixel displayed is the last FarZ of
the extended z-buffer.

The time-trace evolves while the last FarZ is
modified. As with the extended z-buffer, a list
of time-elements is associated with each pixel
on the image. The time-element is also the ba-
sic element of the time-trace. It contains the
following information : the value and the color
of the last FarZ, the creation stage which mem-
orizes the time when the last FarZ appears in
the trace and a pointer to the following element.

4.2 Setting-up of the time-trace.
4.2.1 Initialization

The initial part is described by the time-trace
created during the initialization (stage 0).

4.2.2 Updating

The updating of the time trace is only possible
by studying the different boolean operations
between the two extended z-buffers on one-
dimensional line segment, presented in figure 1.
For a stage n of the simulation, a dexel of the
part is compared to a dexel of the tool. The
material is bounded by a NearZ (Z0) which
appears at a stage i of the simulation and by a

FarZ (Z1) which is created at a stage j of the
simulation. Stages ¢ and j take place at any
time before the present stage n.

Creation of a dexel (case 1 in figure 1).
The updating of this trace does not take this
operation into consideration because the last
FarZ is not modified.

Deletion of a dexel (case 2 in figure 1).
If the deleted dexel is the last dexel of the ex-
tended z-buffer, then the updating of this trace
takes this operation into consideration. Two
cases can be examined. In the first case, the
last dexel is the single dexel of the extended
z-buffer. A new time-element is created : its
creation stage is also the present stage n. Its
Z-value and its color are the data of the back-
ground. In the second case, the last dexel of
the extended z-buffer is preceded by another
dexel, then a new time-element is created : its
creation stage is also the present stage n. Its
Z-value and its color corresponds to the Z-value
and the color of the previous dexel.
Modification of a dexel (cases 3 and 4 in
figure 1). The front of a dexel can be reduced
(case 3), then the value of its NearZ is modi-
fied. In this case, the time-trace is unchanged
because, according to rule 6, the time-trace is
updated when the last FarZ is modified. The
back of a dexel can be reduced (case 4), then
the value of its FarZ is modified. According to
rule 6, the time-trace is updated if and only if
the modified FarZ is the last FarZ. A new time-
element is created : its creation stage, its new
FarZ-value and it colors are also known. The
time-trace is ordered in time along the creation
stage.

The updating is performed only in the two fol-

lowing cases :
1. when the FarZ of the last dexel is modified

(case 4),
2. when the last dexel is deleted.

creation

z0 71 Zk
co C1 Ck

Zi
Ci

z
color

Figure 3: Representation of the time-trace.

4.3 Reconstruction of the scene at

stage n.

The color of each pixel has to be the same as it
was at stage n of the simulation, starting from
the time-trace (figure 2a). It is necessary to ex-
amine the time-trace up to stage s which verifies

the following inequality :
(creation stage s > stage n)
If creation stage s = stage n, then the Z-value

and the color of the pixel at stage n are found.
If creation stage s > stage n, then the Z-value
and the color of the pixel at stage n are the
Z-value and the color of the Z-element which
precedes the Z-element at stage s, because the
next modification takes place after stage n.

5 Experimental evaluation

Let’s take the example of the machining simu-
lation of a small mould. Machining this mould
requires 17,108 toolpaths - most of them being
0.5 mm long - as well as a 107x72x33 mm
stock and a 3 mm tool. The machining takes
1 h 30 min with a three-axis milling machine.
To evaluate the algorithms of the extended z-
buffer and of the traces, a 300 Mhz PC is used.
It has a level-two 512 Ko cache memory and
a 128 Mo RAM. The simulation software uses
direct access to a standard graphics board. A
640x 480 image (307,200 pixels) ! is used. The
data structures have 307,200 dexels, Z-elements
and time-elements when initialized. A dexel
and a time-element use 12 octets while a Z-
element has 16 octets. For an image of a given
size, the number of elements varies according
to several parameters : the size and the shape
of the stock, the number of toolpaths and the
machining strategy used, and the view point.
First, we study the memory and the time re-
quired to create traces. We analyse the results
related to : the construction of an extended z-
buffer, the construction of an extended z-buffer
and a z-trace, and the construction of an ex-
tended z-buffer and a time-trace. The results
related to the memory used are presented in ta-
ble 1. The creation of the extended z-buffer
takes 99.42 s. The creation of the extended
z-buffer and the setting-up of the z-trace take

LFor this specified view, one pixel corresponds to 0.26 mm.

103.04 s while the creation of the extended z-
buffer and the setting-up of the time-trace take
101.23 s. These times do not take into account
the display time as only the creation of the ex-
tended z-buffer and the traces are significant
here.

We now study the reconstruction times of
scenes without display. Considering the large
number of elementary positions present in the
simulation (44,084), we list simulation scenes
which correspond to arbitrary elementary posi-
tions in table 2. For example, the scene in which
the part has already undergone a tenth of the
simulation is listed in the first column. This
corresponds to the position 4,408 when the ex-
tended z-buffer is constructed. To simplify mat-
ters, let’s say that this simulation stage is called
“stage %”. In table 2, the time required is listed
for any given stage : for the construction of the
extended z-buffer, for the reconstruction of the
scene with the z-trace, and for the reconstruc-
tion of the scene with the time-trace.

These results show how useful and efficient
the traces are. The z-trace is constructed in
103.04 s, that is to say only 3.6 % more than
the construction of the extended z-buffer itself.
However, the z-trace requires 45.64 Mo, that
is to say 921.5 % more than the extended z-
buffer. The construction of the z-trace requires
only slightly more time than the construction
of the extended z-buffer while the memory oc-
cupation is much bigger for the trace than for
the extended z-buffer itself. To reconstruct any
given scene, the z-trace uses in the worst case
only 5.2 % of the time necessary to construct
the same scene with the extended z-buffer. A
choice must be made between memory and ex-
ecution time.

It is also possible to study the time-trace. It
is constructed in 101.23 s, that is only 1.8 %
more than the construction of the extended z-
buffer itself. The time-trace requires 24.88 Mo,
that is to say 456.9 % more than the extended
z-buffer. To reconstruct any given scene, the
time-trace uses in the worst case only 0.5 % of
the time necessary to construct the same scene
with the extended z-buffer.

Pixels z-buffer z-trace time-
Toolpaths of trace
(Positions) || the part || Created || Deleted || All the || Z-elements Time-
dexels dexels dexels elements
17,108 121,067 83,217 52,427 || 390,417 || 2,991,055 || 2,174,530
(44,084) 0.96Mo || 0.60Mo || 4.46Mo || 45.6/Mo || 24.88Mo
Table 1: Memory occupation.
Stage % Stage % Stage % Stage % Last stage
z-buffer? || 10.88 26.03 50.14 74.20 99.42
z-trace’ 0.56 0.57 0.57 0.58 0.57
t-trace? 0.06 0.09 0.17 0.25 0.31

Table 2: Reconstruction of the scene (time in seconds).

Although the z-trace and the time-trace are
totally separate, the time-trace can be set up
faster than the z-trace. Indeed, the former
is only updated in certain cases (cf. rule 6)
whereas the latter follows all the updating
stages of the extended z-buffer. Furthermore,
in the time-trace the time-elements are already
put in order when created while in the time-
trace the Z-elements have to be put in order
in the list. By using the time-trace the scene
is reconstructed faster. Thus it is not neces-
sary to search the wanted value (the color) in
this trace, contrary to the z-trace where all the
Z-elements must, be examined to check if the in-
equalities allowing for the reconstruction of the
scene are respected, whatever the chosen stage.
The time-trace takes up less memory than the
z-trace. It seems better adapted to reconstruct
a scene rapidly but the z-trace still has the ad-
vantage of recreating the extended z-buffer. In
the latter case it is possible to go beyond mere
observation and to perform again the simulation
with different toolpaths. Again, it is necessary
to choose here between time and the number of
possible actions. The previous results show the
speed of the simulation : the machining with a
milling machine takes about 1 h 30 min whereas
the visualization of the final part with the ex-
tended z-buffer takes less than 100 s. The re-
sults also show how efficient the data structures
are : reconstructing one given stage of a time
or z-trace is always faster than constructing the
extended z-buffer up to the same stage. This is

2For one simulation.
3 Average for 100 simulations.

why we choose the faster time-trace to perform
an interactive simulation and to revisualize the
simulation of the part machining between any
two stages chosen by the user. The animation
is studied by showing all the stages successively
on the screen. It is done in two ways : first, the
simulation is run by using the extended z-buffer,
then the time-trace is used.

The animation is done between two stages
called S; and Ss. It corresponds in table 3 to
the interval [S,S»]. For instance, in the col-
umn which contains the interval [,1], the an-
imation starts with an image corresponding to
a tenth of the toolpaths (S1=15) and it ends
when a fourth of the toolpaths are processed
(S2=1). The simulation of the machining is re-
played from stage S; to stage Ss. When S;#0,
a preliminary phase is necessary. The first stage
of the simulation (S;) is also located in the data
structure. Now the “actual” animation (what is
seen by the user) can begin and take place from
stage S; to stage S;. That is why we listed
execution times in the two following phases :

e from 0 to Sy (if S1#0) (column (a)). For
the first line, the execution time includes
the construction of the extended z-buffer
up to stage S; and the diplay of the image
corresponding to stage S;. For the sec-
ond line, the execution time includes the
search in the trace for the Time-element
corresponding to stage S; and the display
of the color of this element for each pixel.

0 [o i 53] Fend] | oend
051 || 05 [1551 || 041 [1331 | 04 [1531 || 021 [1end] || iend)
(b) (a) (b) (a) (b (a) (b) (a) (b) (b)
z-buffer || 11.21 10.71 | 16.31 25.81 | 27.36 || 50.81 | 27.24 || 76.02 | 26.86 108.86
t-trace 1.49 0.55 2.03 0.61 7.19 0.66 7.19 0.71 7.53 24.44

Table 3: Animation (time in seconds).

e from S; to Sy (column (b)). For stages
S; such as S; < S; < Sy, the execution
time of the first line includes the evolu-
tion of the extended z-buffer from stage
S1 to stage S and the updating of the
image for all the stages S;. In the sec-
ond line, the execution time includes the
search in the trace for the Time-element
corresponding to stage S; and the display
of the updated image. If S;=0, then the
image corresponding to stage 0 (the part)
is displayed at the beginning of the simu-
lation.

It is interesting to note that if all the columns
labelled (b) in table 3 are added excluding the
last one, the result obtained is coherent with
that of the last column which corresponds to
the entire simulation.

The previous results show how useful a time-
trace is to set up an animation. The anima-
tion obtained with the time-trace for the first
machining stages is indeed ten times as fast as
the one obtained with the extended z-buffer. In
the case of the entire machining simulation, the
time-trace is 4.4 times as fast as with the ex-
tended z-buffer. The extended z-buffer is then
obtained with 17,108 toolpaths in 108.86 s, that
is to say 6.36 ms for each toolpath. The data
structure of the time-trace keeps the data nec-
essary for the simulation of 17,108 toolpaths,
which is obtained in 24.44 s, that is to say
1.43 ms for each toolpath. With the time-trace,
it is possible to get a faster, more efficient and
friendly-user animation.

In table 3, the scenes are replayed chrono-
logically but the animation can also “go back
in time” and “rewind” the trace. It starts with
the final machining scenes, and ends with the
first machining scenes. The algorithmic solu-
tion consists in turning the linked ordered lists
of time-elements associated with each pixel into
doubly-linked ordered lists.

6 Conclusion

To recreate a given scene in NC milling simula-
tion using extended z-buffer, we have presented
two methods : the first one is based on the
depth according to a specified viewing direc-
tion, the second is based on time. The z-trace is
a complete trace which can entirely reconstruct
a scene. On the other hand, the time-trace is
faster but only displays the scene. The setting
up of the traces is all the more useful as the
extra time necessary to elaborate the traces is
very limited compared with the reconstruction
of the scene. Thanks to the time-trace, the ani-
mation is made possible, and the user can replay
interactively any given phase of the machining.
Although this method is memory consuming,
it is compatible with the memory capacity and
the processing speed of PCs assembled today.

References

[1] R.B. JERARD, S.Z. HussaINI, and R.L.
DRYSALE. Approximate methods for sim-
ulation and verification of numerically con-

trolled machining programs. The Visual
Computer, 5:329-348, 1989.

T. VAN Hook. Real-Time Shaded NC
Milling Display. Computer Graphics (Proc.
SIGGRAPH’86), 20(4):15-20, 1986.

J.P. MENON and H.B. VOELCKER. On the
Completeness and Conversion of Ray Repre-
sentations of Arbitrary Solids. Technical re-
port, IBM RC 19935, T.J. Watson Research
Center, Yorktown Heights, 1995.

Y. HuaNG and J.H. OL1VER. NC milling
error assessment and tool path correction.
Computer Graphics (Proc. SIGGRAPH’9),
pages 287-294, 1994.

[4]

K.C. Hul. Solid sweeping in image space —
Application in NC simulation. The Visual
Computer, 10:306-316, 1994.

