The Interval Treap

A complete data structure for the extended z-buffer

I. BLASQUEZ and J.-F. POIRAUDEAU
LICN-IUT,Université de LIMOGES
E-mail : poiraudeau@unilim.fr

Abstract

In this paper, we propose an improvement of the ex-
tended z-buffer. This object representation is well
adapted to the NC machining simulation as practiced
in the workshops. The data structure most often
used to implement the extended z-buffer is the linked
list, but it does not keep in memory the history of
the construction of the workpiece. Thus, to go back
in the visualization process, it is necessary to replay
the simulation from the first stage of the machining.
Also, to obtain an interactive simulation, we propose
to implement the extended z-buffer as an “Interval
Treap” (Treap: tree-heap). This new data structure,
based on the interval binary search trees, contains
all the information necessary to display and to re-
construct again the extended z-buffer at any given
moment of the simulation. The experimental and
theoretical evaluation shows how the use of Interval
Treaps is compatible with the memory capacity and
the processing speed of standard PC hardware, by
offering new prospects to the extended z-buffer like
the setting up of an animation.

Keywords: extended z-buffer, binary search tree,
NC milling simulation, geometric modelling, perfor-
mance study.

1 Introduction

In this paper, we aim to improve the data structure
of the extended z-buffer. The latter is used in NC
milling simulation practiced in the workshops with
the standard PC graphics hardware. With the sim-
ulation, the machine operator tries to find out the
errors which may appear during a real machining. He
needs to know where, when and how these errors ap-
pear so as to measure their impact and thus find ad-
equate solutions. The best way of achieving this is
to perform an interactive simulation where the oper-
ator can visualize not only the finished part but also
the different phases of the machining. In order to
follow the actual material removal and to visualize
a specific moment of the machining, two possibilities
are available. Tt is first possible to execute again the
simulation from the beginning to the chosen moment,
however, this is rather time consuming. The second
solution consists “in gluing” together the virtual part

and virtual chips obtained and memorized during the
simulation. To visualize faster a specific moment of
the machining, we choose to focus on the second solu-
tion which allows the different machining phases to be
stored. Several methods have already been developed
in the field of machining simulation. Some methods
are based on 3 D models like the CSG method and
the B-Rep which both require at least an O(n?) ex-
ecution time [1]. However, they are time-consuming
and also unusable when simulating the machining of
many thousand tool positions. Other methods based
on image space such as the extended z-buffer [2] and
the Ray-Representation [3] are well adapted to this
application. In this paper, we focus on the extended
z-buffer technique which takes only an expected time
in O(n) and gives a user-friendly animation [1].

In a previous paper, we already introduced two
data structures, the z-trace and the t-trace, to come
back to any specific moment of the simulation [4]. We
introduce now the notion of “Interval Treap” in the
extended z-buffer. This new data structure memo-
rizes all the intervals obtained during the whole sim-
ulation. The “Interval Treap” allows not only to go
back quickly to a specific moment of the simulation
but also to model the part, the simulation can then
be continued from a modified part. The originality of
our work consists in using this new single data struc-
ture to implement the extended z-buffer in the field
of computer graphics, and also in studying the perfor-
mances of such a data structure not only in relation
to the characteristics of the standard PC hardware,
but also from an analytical point of view.

2 Different possible data struc-
tures for the extended z-
buffer

Van Hook [2] was the first scientist to fix a view
point in the image space and to define an extended
z-buffer which contains depth elements, called dexels.
A sorted list of dexels is then associated with each
pixel. A dexel represents a rectangular solid, and cor-
responds to a part of the part behind a pixel for a fixed
view point. With the extended z-buffer an object can
be displayed in a specified direction [5]. The part and
the tool are represented by extended z-buffers. The
extended z-buffer structure of the part, and not that

Zmin Zmax

Figure 1: Correspondence between the interval created at stage ¢ and the node of the Interval Treap

of the tool, will be modified as the tool merely re-
moves material from the part during machining. The
boolean operations require two extended z-buffers [6]:
at each elementary position the extended z-buffer of
the part and the extended z-buffer of the tool have to
be compared dexel by dexel. As a list of dexels is asso-
ciated with each pixel, a dexel can be interpreted geo-
metrically as a segment of a given ray in the specified
viewing direction. With the extended z-buffer tech-
nique, boolean subtraction operations can be simply
performed on one-dimensional line segment intersec-
tions. A dexel contains graphic, spatial and model-
ing information about its near depth value (NearZ),
its far depth value (FarZ), its color and a pointer to
the following dexel. The material is bounded by the
NearZ and the FarZ. Algorithmically, the comparison
between the different extended z-buffers is performed
by operations on sorted lists. The linked lists seem to
be the easiest data structure available to implement
the extended z-buffer, and the single data structure
used usually in the literature. Indeed, the required
dexel is quickly found by moving from one element
to another. However, this implementation has some
drawbacks such as the search time of an element in a
linked list of n elements which is in the worst case in
O(n): to reach a required element, it is thus necessary
to go through all the elements preceding it in the list
one by one.

Moreover, the extended z-buffer proposed by Van
Hook does not keep in memory the history of the sim-
ulation. Indeed, when a dexel is deleted from the ex-
tended z-buffer, it is also deleted from the linked list.
This deletion is definitive and the information about
this dexel will not be henceforth present any more in
memory. In the same way, when a dexel is modified,
its NearZ or FarZ is modified, but the former value
is not directly accessible any more. It might also be
difficult to go back to a specific moment of the sim-
ulation, because some data must be recomputed, and
this will be time consuming.

In a recent paper, we defined the z-trace and the t-
trace as an extension of the extended z-buffer. The z-
trace keeps in memory every Z (NearZ and FarZ) and
their parameters. It allows to recreate any given scene
i of the simulation by reconstructing the extended z-
buffer as it was at this scene i. As the displayed pixel

is the last FarZ of the extended z-buffer, the t-trace
memorizes only the last FarZ and its parameters. It
allows to display a scene of simulation by finding the
color of the pixels. The z-trace and the t-trace are
independent. They are built during simulation, and
thus memorize the evolution of the extended z-buffer
step by step. The linked list is the data structure used
for the z-trace and for the t-trace. The originality of
this paper consists in using a new single data structure
which stores all the data calculated during simulation,
and in speeding up the processing of the simulation
compared with an implementation by linked list .

The binary search tree (BST) data structure al-
lows a fast access to a specific element among a great
number of elements memorized during simulation: in-
deed, the time necessary to reach an element z of the
tree is proportional to the depth of z in this tree [7].
In the worst case, the search time of an element in
a balanced tree of n elements is O(logn). To keep
in memory all the modifications of the extended z-
buffer, it is necessary to store two types of data: first,
the space data corresponding to the Z-values (NearZ
and FarZ), then the time data corresponding to the
creation stage of the Z-values in the data structure.
As the extended z-buffer can be simply modeled as
a segment [NearZ,FarZ] in one-dimensional space, we
first thought of using an interval tree data structure.
A possible representation is the “span space” pro-
posed by Livnat, Shen and Johnson, who use a kd-
tree and replace intervals by points [8]. An interval
I = [a;,b;] with a; < b; is represented by a point in
a two-dimension space with a; as X-coordinate and
b; as Y-coordinate. By looking for the points such
as ¢ < g and y > ¢, all the intervals which contain
the ¢ value are found. With this method, however,
the notion of time is forgotten, especially the moment
the dexel appears in the extended z-buffer cannot be
memorized.

We would like to use a data structure which mem-
orizes two types of data: in space and in time. In the
Cartesian trees introduced by Vuillemin, every node
has two keys (z,y) [9]. The value of the z-key satisfies
the property of the binary search trees: the value of
the z-key of a parent node is bigger than the value of
the z-key of his left child and smaller than the value
of the z-key of his right child. The value of the y-

Interval A

V7222222
]

Interval B

Case 1 : modification of an interval (Zmin)
Zao Za1
Zgo Zp1

Zgo Za1

.

Case 3 : creation of an interval

Zpn0 Zp1
Zgo Zp1

Zpo ZBo ZB1 Za1 Zpo Zso

Zp0- ZA1 : interval with last modification at stage i
n :present stage

Case 2 : modification of an interval (Zmax)

Zpo0 Zp1
Zgo Zg1

zZ y4
AD B0 Zpo ZBO
n
Case 4 : deletion of aninterval
Zp0 Zp1
Zgo Zgy
Zpo Zao

Figure 2: Boolean difference operation between two intervals: influence on the Interval Treap

key satisfies the property of “heap-order”: the value
of the y-key of a parent node is always smaller than
the value of the y-key of his children nodes [7]. These
binary search trees are unbalanced. On average, the
execution time of the basic operations of insertion and
search for an element in a Cartesian tree of n elements
is O(log(n)), and in the worst case, if the tree is com-
pletely unbalanced, it can achieve O(n). To obtain
balanced Cartesian trees, it is possible to replace y-
key value by a random value which allows to balance
the tree during its setting-up. Treaps (tree and heap)
are obtained, they are balanced binary search trees
constructed randomly [10, 11]. In our application, we
do not have random values, but we memorize an in-
terval [NearZ, FarZ] by storing two Z-values key and
one value key indexed in time which memorize the
moment of appearance of a new interval in the data
structure. We thus create a new data structure called
“Interval Treap” which contains an interval values and
a time-value and allows to memorize all the modifica-
tions undergone by the z-buffer during the simulation.

3 Interval Treap: a new data

structure

We define an Interval Treap (IT) as a interval binary
search tree indexed in time but unbalanced. It keeps
in memory information about new intervals created
from successive operations on an initial interval: In-
terval Treap is thus composed of “superimposed inter-

vals”. The basic element of Interval Treap is a node
which represents an interval that appeared at stage 3.
It contains the following data: two Z-values, and one
time-value. A Z-value called Z,,;, limits the interval
by its minimal value: in the graphic representation of
the node, this value is put on the left (figure 1). A
Z-value called Z,,,, limits the interval by its maximal
value: in the graphic representation of the node, this
value is put on the right (figure 1). The time-value
corresponds to the moment when the interval appears
in the data structure (called creation stage). In the
graphic representation of the node, this value is put
on figure 1 below the Z-values.

The Interval Treap is an interval binary tree. In-
deed, a node can have at most two children because
modifications can take place only on a Z,,;, or on a
Zmaz, and when an interval is modified, children are
added to the node representing this interval. If the
Zmin 1s modified, a new left child will be created, if
the Z,q, is modified, it will be a new right child. If a
child does not exist, the node points towards NIL. A
leaf is a node where both children pointers are NIL.

The Interval Treap can be updated by studying
the different substraction boolean operations between
two intervals which are the boolean operations used
in machining.

Modification of an interval by its Z,,;, (case 1
in figure 2)

If an interval is reduced by its front, then the Z,,;,-
value is modified. By convention, the Z,,;, is the
value put on the left in the node. To show the dele-

1234567 89 101112
stage 0

stage 1

stage 2

)
®.

stage 3

Stage 4

stage 5

: dexel Z0-Z1 created at stageii

nodes

R o DL
@ history
/

2. @
L]

Interval Treap

leaves

U
actives dexels

stage 6

Stage 7

eaZ FarZ

Extended z-buffer at stagei =7

Figure 3: Example of Interval Treap and extended z-buffer

tion of Z,,;, from the parent interval, the pointer of its
left child is now towards NIL. A new Z,,;, appears
in the data structure and a new interval is created.
To represent this new interval in the data structure,
a new right child node is created. Its Z,,;,-value is
the new Z,,;n-value. Its Z,,,.-value is the Z,,,,-value
of the parent node. Its time-value is also the present
stage n.

Modification of an interval by its Z,,,, (case 2
in figure 2)

This is the same case as previously where Z,,,;,, is re-
placed by Z 40, and Z,q. replaced by Zpin-

Creation of an interval (case 3 in figure 2)
When a new interval appears in the data structure, a
new Zmin and a new Z,,., are created. The bound-
aries of the parent interval are not changed. The cre-
ation of a new interval is reflected on the data struc-
ture by the creation of two new children nodes: a
right child and a left child whose values are respec-
tively those of the previous case 1 and case 2.
Deletion of an interval (case 4 in figure 2)

The deletion of an interval is a difficult stage to model.
To show that an interval is removed at stage ¢, only
one child node must be created to represent this stage
i. By convention, the node created will be a left child
which will have the same values for Z,,;, and Z,,4z.
This node is called “empty leaf” of the Interval Treap.
Indeed, there will be no more possible modification
from this node, it is thus a leaf which is described
as empty because the Z,,;,-value and the Z,,,,-value
are equal.

4 Using the Interval Treap with
the extended z-buffer

4.1 The Interval Treap: a complete

data structure for the extended z-
buffer

The Interval Treap is a data structure well adapted
for the extended z-buffer. The information about the
dexel is contained in the basic element of the Interval
Treap. The key value NearZ corresponds to the Z,, ;.-
value. The value FarZ corresponds to the Z,,,.-value.
The time-value defines the moment a dexel appears in
the extended z-buffer during the simulation.

When a dexel is modified, children nodes are added
to the father node modelling the dexel. These children
then become the new leaves of the tree. The active
dexels of the extended z-buffer are the leaves of the
Interval Treap. The leaves of an Interval Treap are
arranged by order. To traverse the non-empty leaves
of an Interval Treap from left to right is equivalent
to traversing the dexels of the extended z-buffer ex-
tended in the same order(figure 3). The intermediate
nodes of the Interval Treap are a part of the history
of the extended z-buffer, because at a given time of
simulation these nodes were also the leaves of the tree,
so they were active dexels of the extended z-buffer.

An Interval Treap memorizes all the modifications
undergone by the extended z-buffer during the simu-
lation. It thus occupies in memory more space than a
simple linked list, but its functionalities are at the
same time those of the extended z-buffer and the
traces. Simulations will show that the memory oc-

Case 1: Update

Case 3: No Update
W)

Case 2 : Update

Case 4 : No Update

Material

L1 Tool
Yiiiim

]

I

Figure 4: Update-No Update of a dexel

cupied by any Interval Treap is finally less signifi-
cant than the whole memory occupied by two or three
linked lists; one modelling the extended z-buffer, and
the other(s) modelling the trace(s) associated with the
extended z-buffer.

4.2 Updating of the Interval Treap

During the update of an Interval Treap, it is neces-
sary to find the leaf (case 1 in figure 4) or the leaves
(case 2 of the figure 4) corresponding to the dexels
to be modified. As the leaves of the Interval Treap
are arranged by order, a postorder or preorder
traversal is used. To avoid traversing the whole
tree for every new stage, we listed two cases (case 3
and 4 in figure 4) for which the dexel does not have
any modifications.

e case 3: if the dexel of the tool precedes the dexel
of the part without overlapping it. This con-
dition can be summarized by the following in-
equality:

FarZ of the tool > NearZ of the part

e case 4: if the dexel of the part precedes the
dexel of the tool without overlapping it. This
condition can be summarized by the following
inequality:

FarZ of the part > NearZ of the tool

A dexel will be modified if and only if case 3 AND
case 4 are not satisfied. A dexel will not be modified
if and only if case 3 OR case 4 is satisfied. Thus, a
dexel could be modified if and only if it verifies the
following condition (1):

FarZ of the tool > NearZ of the part
AND
FarZ of the part > NearZ of the tool

How can this condition modify the traversal of
the Interval Treap?

At a given moment of the simulation, all the nodes of
the Interval Treap have been a leaf, i.e an active dexel
of the extended z-buffer. It is necessary for every node
to verify if condition (1) is observed.

e if (1) is TRUE: the traversal continues because
the following nodes (dexels) are susceptible to
be modified.

e if (1) is FALSE: the traversal of this branch of
the Interval Treap is stopped momentarily. In-
deed, if a father node (dexel) does not verify
condition (1) then its children nodes (“children
dexels”) will not verify condition (1) either.

Then, we want to determine in which case the traver-
sal is interrupted momentarily or definitely. At each
stage, the extended z-buffer of the part and the ex-
tended z-buffer of the tool have to be compared dexel
by dexel. The updating on the dexels of the extended
z-buffer of the part will not be possible any more
when:

Far Z of the part > Far Z of the tool (2)

For the extended z-buffer as an Interval Treap, the
traversal of the tree will be stopped definitely in ei-
ther of the following cases:

e if a leaf has just been created and:
New FarZ of the part > FarZ of the tool.

e if condition (1) is FALSE and if (2) is TRUE.

4.3 Use of the Interval Treap

4.3.1 Display of the current color on the

screen

The visible color on the screen is the color of the last
FarZ of the extended z-buffer. When the z-buffer uses
the data structure of Interval Treap, only the last non
empty leaf (NearZ # FarZ), that is the leaf on the
right in the tree, is interesting. That is why, for the
display of the color of the current extended z-buffer,
the traversal of the tree will be a postorder
traversal (from right children to left children). If all
the leaves are empty, the required color is the color of
the background.

Pixels z-buffer z-trace time interval
Toolpaths of trace treap
(Positions) || the part || Created || Deleted || All the Z Time IT
dexels dexels dexels elements || elements nodes
17,108 121,067 83,217 52,427 || 390,417 || 2,991,055 || 2,174,530 || 2,922,415
(44,084) 0.96Mo || 0.60Mo || 4.46Mo || 45.64Mo || 24.88Mo || 45.66Mo

Table 1: Memory occupation.

4.3.2 Use of Interval Treap as a history of

the extended z-buffer

Thanks to this data structure, the machining can start
again from any stage of the simulation. To recon-
struct the Interval Treap of the extended z-buffer as
it was at stage ¢ of the simulation, it is necessary to
“cut” correctly the tree. A preoder or postorder can
be indifferently chosen because all the branches of the
tree must be examined. For each ramification of the
tree, the traversal is stopped in either of the following
cases:

e if the current node verifies the following inequal-
ities:

(creation stage of the left child > stage i)
AND

(creation stage of the right child > stage i)

The pointers of the current node towards its
right and left children are initialized with NTL.

e if the current node is a leaf (node with neither
right nor left child).

Once the Interval Treap is reconstructed, two applica-
tions can be envisaged. Thanks to this data structure,
it is first possible to display on the screen the color of
the pixel at stage i (see previous paragraph). Then,
the extended z-buffer can undergo new operations in
order to play another simulation.

5 Experimental evaluation of

the algorithm

Let’s take the example of the machining simulation of
a small mould. Machining this mould requires 17,108
toolpaths - most of them being 0.5 mm long - as well
as a 107x72x33 mm stock and a 3 mm tool. The
machining takes 1 h 30 min with a three-axis milling
machine. To evaluate the algorithms, a 300 Mhz PC
is used. It has a level-two 512 Ko cache memory and
a 128 Mo RAM. The simulation software uses direct

access to a standard graphics board. The preorder
and postorder traversals of the Interval Treap use re-
cursive algorithms. A 640x480 image (307,200 pixels)
I'is used. The data structures have 307,200 dexels, Z-
elements and time-elements when initialized. For an
image of a given size, the number of elements varies
according to several parameters: the size and the
shape of the stock, the number of toolpaths and the
machining strategy used, and finally the view point.
A dexel and a time-element use 12 octets

First, we study the memory and the time required
to create the Interval Treap. The creation of the ex-
tended z-buffer takes 99.42 s. The construction of
the Interval Treap requires 341.13 s. These times do
not take into account the display time. The Interval
Treap needs 3.43 times more time to be set up than
the data structure of the linked list.

The results related to the memory used are pre-
sented in table 1. At the end of the simulation, the
Interval Treap occupies 10 times more memory space
than all the necessary dexels for the implementation
of the extended z-buffer as linked list. But if we con-
sider the z-trace and the time-trace, the extended z-
buffer can be reconstructed and/or rapidly displayed
for any given stage of the simulation. The memory
occupation is also 4.46Mo + 45.64Mo + 24.88Mo, so
74.88Mo. With the Interval Treap, the memory occu-
pation is only 44.59Mo, and any given stage can also
be reconstructed and/or displayed and we save 40 %
memory off.

We now study the reconstruction times of scenes
without access to the graphics board. Considering the
large number of elementary positions present in the
simulation (44,084), we list simulation scenes which
correspond to arbitrary elementary positions. For ex-
ample, the scene in which the part has already un-
dergone a tenth of the simulation is listed in the first
column. This corresponds to position 4,408 when the
extended z-buffer is constructed. To simplify matters,
let’s say that this simulation stage is called “stage
%”. For the construction of the extended z-buffer,
the time required for stages 11—0, i, %, % and the last
stage is respectively 10.88 s, 26.03 s, 50.14 s, 74.20 s

and 99.42 s, that is equivalent to several ten seconds.

LFor this specified view, one pixel represents a 0.26 mm length on the part

k- g ——

—%— z-—trace
—=<— t—trace
—— IT (dis)
—— IT (rec)

1/10 2/10 3/10 4/10

6/10 7/10 8/10 9/10 Last

Stages

Figure 5: Reconstruction of the scene (time in seconds)

*

Ve

*

* * *

/ a /\
¥ ¥
/\/*

e * *

N / \ T,

v /N . Y VRN AN

/\ NN
T
* * * * -
NN NN D

Z / : :

*

N, * x s o o,
L AWAYANWAVAWAVARYA SN
*/ * * * x kk ok kK ok k k kK Kk * * */ *
N S N
P
e e N
e N, N, .
L Unbalanced tree Balanced tree Unbalanced tree N
e model 1 model 2 model 3 N
e v N,
* * AN

Figure 6: Different Interval Treaps

In figure 5, the time required is listed for any given
stage: for the setting up of the display of the scene
with the time-trace and the Interval Treap (IT(dis)),
and for the reconstruction of the scene with the z-
trace and the Interval Treap (IT(rec)). These times
are now equivalent only to tenths of second. To dis-
play any given scene, the Interval Treap uses in the
worst case 3.7 more time than the t-trace, that is only
2.2% more than the time necessary to construct the
same scene with the extended z-buffer. The display
of the scene with the Interval Treap is less quick than
with the t-trace: in fact, the traversal of empty leaves
either decreases or increases the time, depending on
the specified point of view.

To reconstruct any given scene, the Interval Treap
uses in the best case 30% less time than the recon-
struction of the same scene with the z-trace. The
Interval Treap uses in the worst case only 40% more
than the z-trace. The z-trace data structure has no
empty leaves, that is why the reconstruction with the
Interval Treap is more time consuming for the scenes
at the end of the simulation. Although, the Inter-
val Treap uses in the worst case only 2.02% of the
time necessary to construct the same scene with the
extended z-buffer.

It is interesting to notice that only 4 reconstruc-
tions of any scene at the end of the simulation are

necessary to validate the Interval Treap data struc-
ture.

In figure 6, we listed different possible models for
Interval Treap. The balance of an Interval Treap de-
pends on several parameters, especially the point of
view (orientation of the workpiece in the image space)
and the machining strategy used. For example, the
unbalanced trees of models 1 and 3 are obtained with
the zigzag machining strategy. The balanced trees of
model 2 could be created with a machining strategy
such as parallel contour. Let’s take the example of
the unbalanced Interval Treap of model 1. We now
study the performances of this new implementation
for the extended z-buffer on this tree which is not the
best case for our data structure. The times for the
reconstruction and the display of any given scene by
an IT are very close. The unbalance is also shown by
these times. Indeed, to reconstruct an IT at stage ¢ of
the simulation from a balanced IT of model 2, all the
branches of this tree have to be traversed, so many
comebacks must be executed. On the contrary, for
the display of the same scene i of the simulation, only
a partial traversal is necessary up to the right node
(which was the last leaf of the IT at stage 7). For the
unbalanced trees of models 1 and 3, the comebacks
are fewer but most branches can be seen in the whole
traversal compared to the partial traversal. For the

reconstruction of any given scene, especially for the
scene at the beginning and at the middle of the simu-
lation, the traversal of an unbalanced Interval Treap
of model 1 or 3 can be faster than the traversal of a
balanced Interval Treap because fewer branches must
be treated.

6 Analysis of the algorithm

The analysis of the algorithm refers to two differ-
ent designs for the performance study of a program.
The first approach consists in determining the per-
formances of any algorithm by considering the worst
case. For any given algorithm solving a specific prob-
lem, a lower limit can be found, and this limit cor-
responds to the performances of the algorithm in the
worst case. Thanks to this approach, it is possible for
instance to say that the search time for a linked list
of N elements is in O(N) in the worst case. The sec-
ond approach consists in characterizing in a rigorous
way the performances of an algorithm by analyzing
the best case, the average case and the worst case
with methods making it possible to refine the preci-
sion. This approach relies on the precise enumeration
of the different configurations of a data structure.

We adopt the second approach. Thanks to the
calculation and the evaluation of the average height
(or level), the balance of the Interval Treap can be
characterized and classified as well as possible. In-
deed, in the best case, a tree of N nodes is balanced.
Its maximal height is log,(/N) and the operations of
insertion and search can be implemented in log, (V)
time. In the worst case, the tree is completely un-
balanced (one node per level). Its maximal height is
N, and the operations of insertion and search can be
implemented in N time, this worst case structure is
no more efficient than a regular linked list. So, the
time required for the construction of the IT, and the
time required for the display and the reconstruction
of a specific scene of the simulation depend on the bal-
ance of the Interval Treap. Let’s take the example of
the model 1 tree in figure 6: it is an Interval Treap ob-
tained during the simulation. This tree has 38 nodes,
this is about the average number of nodes of the In-
terval Treap used in the simulation. In the best case,
the tree could be balanced. The average height for a
balanced search tree of 38 nodes is Hyqranceda = 3.5.
In the worst case, the tree could be completely un-
balanced. The average height for a completely unbal-
anced search tree of N nodes is Hynpalanced = %,
so for a tree of 38 nodes Hunpalanceda = 18.5. For
the average case, Segewick studied the binary search
trees constructed from a random drawing for their
key values [12]. He obtained the following formula
about the average height for such a tree of N nodes:
Hyong = 4.311 x In(N) + o(In(N)), so for a tree of
38 nodes H,unq = 15.68. The average height calcu-
lated on the Interval Treap of model 1 in figure 6 is:

Hj;p1 = 9.11. This value is about twice as much as
for a completely unbalanced tree, and it approaches
the average height of a balanced tree. Using the In-
terval Treap as a new data structure for the extended
z-buffer is thus interesting, even in a case such as the
unfavourable example studied in the previous para-
graph.

7 Conclusion

To recreate a given scene in NC milling simulation
using the extended z-buffer, we have presented a new
single data structure based on interval binary trees:
the Interval Treap. These search trees can quickly dis-
play and/or reconstruct any given scene of the simu-
lation. We have also studied the performances of this
new data structure for the extended z-buffer in two
different ways. The experimental evaluation showed
that even if the setting-up of Interval Treaps is some-
what time consuming, this extra time is recovered if
several scenes at the end of the simulation are recon-
structed successively. Moreover, this method is com-
patible with the standard graphics board, the memory
capacity and the processing speed of PCs assembled
today. Thanks to the analysis of the algorithm, it is
then possible to characterize the balance of the Inter-
val Treap by studying the average heights. The latter
are close to the best case of balanced trees. The In-
terval Treap data structure seems to be well adapted
for a complete use of the extended z-buffer.

References

[1] R.B. JERARD, S.Z. HussaiNl, and R.L.
DRYSALE. Approximate methods for simulation
and verification of numerically controlled ma-
chining programs. The Visual Computer, 5:329—
348, 19809.

[2] T. VAN HOOK. Real-Time Shaded NC
Milling Display. Computer Graphics (Proc. SIG-
GRAPH’86), 20(4):15-20, 1986.

[3] J.P. MENON and H.B. VOELCKER. On the Com-
pleteness and Conversion of Ray Representations
of Arbitrary Solids. Technical report, IBM RC
19935, T.J. Watson Research Center, Yorktown
Heights, 1995.

[4] I. BLASQUEZ and J-F. POIRAUDEAU. Improv-
ing the Extended Z-Buffer, Z-Trace, T-Trace and
Animation. Proceedings of the IASTED Interna-
tional Conference Computer Graphics and Imag-
1ng, pages 81-87, 1999.

[5] Y. HuaNG and J.H.OLIVER. Integrated Simula-
tion, Error Assessment and Tool Path Correction
for Five-Axis NC Machining. Journal of Manu-
facturing Systems, 14(5):331-344, 1995.

[6] K.C. Hul. Solid sweeping in image space — Ap-
plication in NC simulation. The Visual Com-
puter, 10:306-316, 1994.

[7] M.A. WEIss. Data Structure and Algorithms
Analysis in C++. Addison Wesley, 1999.

[8] Y. LivNaT, H. SHEN, and C.R. JOHNSON. A
Near Isosurface Extraction Algorithm Using the
Span Space. IEEE Trans. on Visualization and
Computer Graphics, 2(1):73-84, 1998.

[9] J. VUILLEMIN. A Unifying Look at Data Struc-
tures. Communications of the ACM, 23:229-239,

[10]

[11]

[12]

1980.

R. SEIGEL and C.R. ARAGON. Randomized
Search Trees. Algorithmica, 16:464-497, 1996.

G.E. BLELLOCH and M. REID-MILLER. Fast Set
Operation Using Treaps. Proceedings of the 10th
Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 16-26, 1998.

R. SEDGEWICK and P. FLAJOLET. An Intro-
duction to the Analysis of Algorithms. Addison
Wesley, 1996.

