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Abstrat

In this paper, we propose an improvement of the ex-

tended z-bu�er. This objet representation is well

adapted to the NC mahining simulation as pratied

in the workshops. The data struture most often

used to implement the extended z-bu�er is the linked

list, but it does not keep in memory the history of

the onstrution of the workpiee. Thus, to go bak

in the visualization proess, it is neessary to replay

the simulation from the �rst stage of the mahining.

Also, to obtain an interative simulation, we propose

to implement the extended z-bu�er as an \Interval

Treap" (Treap: tree-heap). This new data struture,

based on the interval binary searh trees, ontains

all the information neessary to display and to re-

onstrut again the extended z-bu�er at any given

moment of the simulation. The experimental and

theoretial evaluation shows how the use of Interval

Treaps is ompatible with the memory apaity and

the proessing speed of standard PC hardware, by

o�ering new prospets to the extended z-bu�er like

the setting up of an animation.

Keywords: extended z-bu�er, binary searh tree,

NC milling simulation, geometri modelling, perfor-

mane study.

1 Introdution

In this paper, we aim to improve the data struture

of the extended z-bu�er. The latter is used in NC

milling simulation pratied in the workshops with

the standard PC graphis hardware. With the sim-

ulation, the mahine operator tries to �nd out the

errors whih may appear during a real mahining. He

needs to know where, when and how these errors ap-

pear so as to measure their impat and thus �nd ad-

equate solutions. The best way of ahieving this is

to perform an interative simulation where the oper-

ator an visualize not only the �nished part but also

the di�erent phases of the mahining. In order to

follow the atual material removal and to visualize

a spei� moment of the mahining, two possibilities

are available. It is �rst possible to exeute again the

simulation from the beginning to the hosen moment,

however, this is rather time onsuming. The seond

solution onsists \in gluing" together the virtual part

and virtual hips obtained and memorized during the

simulation. To visualize faster a spei� moment of

the mahining, we hoose to fous on the seond solu-

tion whih allows the di�erent mahining phases to be

stored. Several methods have already been developed

in the �eld of mahining simulation. Some methods

are based on 3 D models like the CSG method and

the B-Rep whih both require at least an O(n

3

) ex-

eution time [1℄. However, they are time-onsuming

and also unusable when simulating the mahining of

many thousand tool positions. Other methods based

on image spae suh as the extended z-bu�er [2℄ and

the Ray-Representation [3℄ are well adapted to this

appliation. In this paper, we fous on the extended

z-bu�er tehnique whih takes only an expeted time

in O(n) and gives a user-friendly animation [1℄.

In a previous paper, we already introdued two

data strutures, the z-trae and the t-trae, to ome

bak to any spei� moment of the simulation [4℄. We

introdue now the notion of \Interval Treap" in the

extended z-bu�er. This new data struture memo-

rizes all the intervals obtained during the whole sim-

ulation. The \Interval Treap" allows not only to go

bak quikly to a spei� moment of the simulation

but also to model the part, the simulation an then

be ontinued from a modi�ed part. The originality of

our work onsists in using this new single data stru-

ture to implement the extended z-bu�er in the �eld

of omputer graphis, and also in studying the perfor-

manes of suh a data struture not only in relation

to the harateristis of the standard PC hardware,

but also from an analytial point of view.

2 Di�erent possible data stru-

tures for the extended z-

bu�er

Van Hook [2℄ was the �rst sientist to �x a view

point in the image spae and to de�ne an extended

z-bu�er whih ontains depth elements, alled dexels.

A sorted list of dexels is then assoiated with eah

pixel. A dexel represents a retangular solid, and or-

responds to a part of the part behind a pixel for a �xed

view point. With the extended z-bu�er an objet an

be displayed in a spei�ed diretion [5℄. The part and

the tool are represented by extended z-bu�ers. The

extended z-bu�er struture of the part, and not that
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Figure 1: Correspondene between the interval reated at stage i and the node of the Interval Treap

of the tool, will be modi�ed as the tool merely re-

moves material from the part during mahining. The

boolean operations require two extended z-bu�ers [6℄:

at eah elementary position the extended z-bu�er of

the part and the extended z-bu�er of the tool have to

be ompared dexel by dexel. As a list of dexels is asso-

iated with eah pixel, a dexel an be interpreted geo-

metrially as a segment of a given ray in the spei�ed

viewing diretion. With the extended z-bu�er teh-

nique, boolean subtration operations an be simply

performed on one-dimensional line segment interse-

tions. A dexel ontains graphi, spatial and model-

ing information about its near depth value (NearZ),

its far depth value (FarZ), its olor and a pointer to

the following dexel. The material is bounded by the

NearZ and the FarZ. Algorithmially, the omparison

between the di�erent extended z-bu�ers is performed

by operations on sorted lists. The linked lists seem to

be the easiest data struture available to implement

the extended z-bu�er, and the single data struture

used usually in the literature. Indeed, the required

dexel is quikly found by moving from one element

to another. However, this implementation has some

drawbaks suh as the searh time of an element in a

linked list of n elements whih is in the worst ase in

O(n): to reah a required element, it is thus neessary

to go through all the elements preeding it in the list

one by one.

Moreover, the extended z-bu�er proposed by Van

Hook does not keep in memory the history of the sim-

ulation. Indeed, when a dexel is deleted from the ex-

tended z-bu�er, it is also deleted from the linked list.

This deletion is de�nitive and the information about

this dexel will not be heneforth present any more in

memory. In the same way, when a dexel is modi�ed,

its NearZ or FarZ is modi�ed, but the former value

is not diretly aessible any more. It might also be

diÆult to go bak to a spei� moment of the sim-

ulation, beause some data must be reomputed, and

this will be time onsuming.

In a reent paper, we de�ned the z-trae and the t-

trae as an extension of the extended z-bu�er. The z-

trae keeps in memory every Z (NearZ and FarZ) and

their parameters. It allows to rereate any given sene

i of the simulation by reonstruting the extended z-

bu�er as it was at this sene i. As the displayed pixel

is the last FarZ of the extended z-bu�er, the t-trae

memorizes only the last FarZ and its parameters. It

allows to display a sene of simulation by �nding the

olor of the pixels. The z-trae and the t-trae are

independent. They are built during simulation, and

thus memorize the evolution of the extended z-bu�er

step by step. The linked list is the data struture used

for the z-trae and for the t-trae. The originality of

this paper onsists in using a new single data struture

whih stores all the data alulated during simulation,

and in speeding up the proessing of the simulation

ompared with an implementation by linked list .

The binary searh tree (BST) data struture al-

lows a fast aess to a spei� element among a great

number of elements memorized during simulation: in-

deed, the time neessary to reah an element x of the

tree is proportional to the depth of x in this tree [7℄.

In the worst ase, the searh time of an element in

a balaned tree of n elements is O(log n). To keep

in memory all the modi�ations of the extended z-

bu�er, it is neessary to store two types of data: �rst,

the spae data orresponding to the Z-values (NearZ

and FarZ), then the time data orresponding to the

reation stage of the Z-values in the data struture.

As the extended z-bu�er an be simply modeled as

a segment [NearZ,FarZ℄ in one-dimensional spae, we

�rst thought of using an interval tree data struture.

A possible representation is the \span spae" pro-

posed by Livnat, Shen and Johnson, who use a kd-

tree and replae intervals by points [8℄. An interval

I = [a

i

; b

i

℄ with a

i

� b

i

is represented by a point in

a two-dimension spae with a

i

as X-oordinate and

b

i

as Y-oordinate. By looking for the points suh

as x � q and y � q, all the intervals whih ontain

the q value are found. With this method, however,

the notion of time is forgotten, espeially the moment

the dexel appears in the extended z-bu�er annot be

memorized.

We would like to use a data struture whih mem-

orizes two types of data: in spae and in time. In the

Cartesian trees introdued by Vuillemin, every node

has two keys (x,y) [9℄. The value of the x-key satis�es

the property of the binary searh trees: the value of

the x-key of a parent node is bigger than the value of

the x-key of his left hild and smaller than the value

of the x-key of his right hild. The value of the y-
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Figure 2: Boolean di�erene operation between two intervals: inuene on the Interval Treap

key satis�es the property of \heap-order": the value

of the y-key of a parent node is always smaller than

the value of the y-key of his hildren nodes [7℄. These

binary searh trees are unbalaned. On average, the

exeution time of the basi operations of insertion and

searh for an element in a Cartesian tree of n elements

is O(log(n)), and in the worst ase, if the tree is om-

pletely unbalaned, it an ahieve O(n). To obtain

balaned Cartesian trees, it is possible to replae y-

key value by a random value whih allows to balane

the tree during its setting-up. Treaps (tree and heap)

are obtained, they are balaned binary searh trees

onstruted randomly [10, 11℄. In our appliation, we

do not have random values, but we memorize an in-

terval [NearZ, FarZ℄ by storing two Z-values key and

one value key indexed in time whih memorize the

moment of appearane of a new interval in the data

struture. We thus reate a new data struture alled

\Interval Treap" whih ontains an interval values and

a time-value and allows to memorize all the modi�a-

tions undergone by the z-bu�er during the simulation.

3 Interval Treap: a new data

struture

We de�ne an Interval Treap (IT) as a interval binary

searh tree indexed in time but unbalaned. It keeps

in memory information about new intervals reated

from suessive operations on an initial interval: In-

terval Treap is thus omposed of \superimposed inter-

vals". The basi element of Interval Treap is a node

whih represents an interval that appeared at stage i.

It ontains the following data: two Z-values, and one

time-value. A Z-value alled Z

min

limits the interval

by its minimal value: in the graphi representation of

the node, this value is put on the left (�gure 1). A

Z-value alled Z

max

limits the interval by its maximal

value: in the graphi representation of the node, this

value is put on the right (�gure 1). The time-value

orresponds to the moment when the interval appears

in the data struture (alled reation stage). In the

graphi representation of the node, this value is put

on �gure 1 below the Z-values.

The Interval Treap is an interval binary tree. In-

deed, a node an have at most two hildren beause

modi�ations an take plae only on a Z

min

or on a

Z

max

, and when an interval is modi�ed, hildren are

added to the node representing this interval. If the

Z

min

is modi�ed, a new left hild will be reated, if

the Z

max

is modi�ed, it will be a new right hild. If a

hild does not exist, the node points towards NIL. A

leaf is a node where both hildren pointers are NIL.

The Interval Treap an be updated by studying

the di�erent substration boolean operations between

two intervals whih are the boolean operations used

in mahining.

Modi�ation of an interval by its Z

min

(ase 1

in �gure 2)

If an interval is redued by its front, then the Z

min

-

value is modi�ed. By onvention, the Z

min

is the

value put on the left in the node. To show the dele-
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Extended z-buffer at stage i = 7

1 2 3 4 5 6 7 8 9 10 11 12 : dexel Z0-Z1 created at stage i
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Figure 3: Example of Interval Treap and extended z-bu�er

tion of Z

min

from the parent interval, the pointer of its

left hild is now towards NIL. A new Z

min

appears

in the data struture and a new interval is reated.

To represent this new interval in the data struture,

a new right hild node is reated. Its Z

min

-value is

the new Z

min

-value. Its Z

max

-value is the Z

max

-value

of the parent node. Its time-value is also the present

stage n.

Modi�ation of an interval by its Z

max

(ase 2

in �gure 2)

This is the same ase as previously where Z

min

is re-

plaed by Z

max

, and Z

max

replaed by Z

min

.

Creation of an interval (ase 3 in �gure 2)

When a new interval appears in the data struture, a

new Z

min

and a new Z

max

are reated. The bound-

aries of the parent interval are not hanged. The re-

ation of a new interval is reeted on the data stru-

ture by the reation of two new hildren nodes: a

right hild and a left hild whose values are respe-

tively those of the previous ase 1 and ase 2.

Deletion of an interval (ase 4 in �gure 2)

The deletion of an interval is a diÆult stage to model.

To show that an interval is removed at stage i, only

one hild node must be reated to represent this stage

i. By onvention, the node reated will be a left hild

whih will have the same values for Z

min

and Z

max

.

This node is alled \empty leaf" of the Interval Treap.

Indeed, there will be no more possible modi�ation

from this node, it is thus a leaf whih is desribed

as empty beause the Z

min

-value and the Z

max

-value

are equal.

4 Using the Interval Treap with

the extended z-bu�er

4.1 The Interval Treap: a omplete

data struture for the extended z-

bu�er

The Interval Treap is a data struture well adapted

for the extended z-bu�er. The information about the

dexel is ontained in the basi element of the Interval

Treap. The key value NearZ orresponds to the Z

min

-

value. The value FarZ orresponds to the Z

max

-value.

The time-value de�nes the moment a dexel appears in

the extended z-bu�er during the simulation.

When a dexel is modi�ed, hildren nodes are added

to the father node modelling the dexel. These hildren

then beome the new leaves of the tree. The ative

dexels of the extended z-bu�er are the leaves of the

Interval Treap. The leaves of an Interval Treap are

arranged by order. To traverse the non-empty leaves

of an Interval Treap from left to right is equivalent

to traversing the dexels of the extended z-bu�er ex-

tended in the same order(�gure 3). The intermediate

nodes of the Interval Treap are a part of the history

of the extended z-bu�er, beause at a given time of

simulation these nodes were also the leaves of the tree,

so they were ative dexels of the extended z-bu�er.

An Interval Treap memorizes all the modi�ations

undergone by the extended z-bu�er during the simu-

lation. It thus oupies in memory more spae than a

simple linked list, but its funtionalities are at the

same time those of the extended z-bu�er and the

traes. Simulations will show that the memory o-
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Figure 4: Update-No Update of a dexel

upied by any Interval Treap is �nally less signi�-

ant than the whole memory oupied by two or three

linked lists; one modelling the extended z-bu�er, and

the other(s) modelling the trae(s) assoiated with the

extended z-bu�er.

4.2 Updating of the Interval Treap

During the update of an Interval Treap, it is nees-

sary to �nd the leaf (ase 1 in �gure 4) or the leaves

(ase 2 of the �gure 4) orresponding to the dexels

to be modi�ed. As the leaves of the Interval Treap

are arranged by order, a postorder or preorder

traversal is used. To avoid traversing the whole

tree for every new stage, we listed two ases (ase 3

and 4 in �gure 4) for whih the dexel does not have

any modi�ations.

� ase 3: if the dexel of the tool preedes the dexel

of the part without overlapping it. This on-

dition an be summarized by the following in-

equality:

FarZ of the tool � NearZ of the part

� ase 4: if the dexel of the part preedes the

dexel of the tool without overlapping it. This

ondition an be summarized by the following

inequality:

FarZ of the part � NearZ of the tool

A dexel will be modi�ed if and only if ase 3 AND

ase 4 are not satis�ed. A dexel will not be modi�ed

if and only if ase 3 OR ase 4 is satis�ed. Thus, a

dexel ould be modi�ed if and only if it veri�es the

following ondition (1):

FarZ of the tool > NearZ of the part

AND

FarZ of the part > NearZ of the tool

How an this ondition modify the traversal of

the Interval Treap?

At a given moment of the simulation, all the nodes of

the Interval Treap have been a leaf, i.e an ative dexel

of the extended z-bu�er. It is neessary for every node

to verify if ondition (1) is observed.

� if (1) is TRUE: the traversal ontinues beause

the following nodes (dexels) are suseptible to

be modi�ed.

� if (1) is FALSE: the traversal of this branh of

the Interval Treap is stopped momentarily. In-

deed, if a father node (dexel) does not verify

ondition (1) then its hildren nodes (\hildren

dexels") will not verify ondition (1) either.

Then, we want to determine in whih ase the traver-

sal is interrupted momentarily or de�nitely. At eah

stage, the extended z-bu�er of the part and the ex-

tended z-bu�er of the tool have to be ompared dexel

by dexel. The updating on the dexels of the extended

z-bu�er of the part will not be possible any more

when:

Far Z of the part � Far Z of the tool (2)

For the extended z-bu�er as an Interval Treap, the

traversal of the tree will be stopped de�nitely in ei-

ther of the following ases:

� if a leaf has just been reated and:

New FarZ of the part � FarZ of the tool.

� if ondition (1) is FALSE and if (2) is TRUE.

4.3 Use of the Interval Treap

4.3.1 Display of the urrent olor on the

sreen

The visible olor on the sreen is the olor of the last

FarZ of the extended z-bu�er. When the z-bu�er uses

the data struture of Interval Treap, only the last non

empty leaf (NearZ 6= FarZ), that is the leaf on the

right in the tree, is interesting. That is why, for the

display of the olor of the urrent extended z-bu�er,

the traversal of the tree will be a postorder

traversal (from right hildren to left hildren). If all

the leaves are empty, the required olor is the olor of

the bakground.



Pixels z-bu�er z-trae time interval

Toolpaths of trae treap

(Positions) the part Created Deleted All the Z Time IT

dexels dexels dexels elements elements nodes

17,108 121,067 83,217 52,427 390,417 2,991,055 2,174,530 2,922,415

(44,084) 0.96Mo 0.60Mo 4.46Mo 45.64Mo 24.88Mo 45.66Mo

Table 1: Memory oupation.

4.3.2 Use of Interval Treap as a history of

the extended z-bu�er

Thanks to this data struture, the mahining an start

again from any stage of the simulation. To reon-

strut the Interval Treap of the extended z-bu�er as

it was at stage i of the simulation, it is neessary to

\ut" orretly the tree. A preoder or postorder an

be indi�erently hosen beause all the branhes of the

tree must be examined. For eah rami�ation of the

tree, the traversal is stopped in either of the following

ases:

� if the urrent node veri�es the following inequal-

ities:

(reation stage of the left hild > stage i)

AND

(reation stage of the right hild > stage i)

The pointers of the urrent node towards its

right and left hildren are initialized with NIL.

� if the urrent node is a leaf (node with neither

right nor left hild).

One the Interval Treap is reonstruted, two applia-

tions an be envisaged. Thanks to this data struture,

it is �rst possible to display on the sreen the olor of

the pixel at stage i (see previous paragraph). Then,

the extended z-bu�er an undergo new operations in

order to play another simulation.

5 Experimental evaluation of

the algorithm

Let's take the example of the mahining simulation of

a small mould. Mahining this mould requires 17,108

toolpaths - most of them being 0.5 mm long - as well

as a 107�72�33 mm stok and a 3 mm tool. The

mahining takes 1 h 30 min with a three-axis milling

mahine. To evaluate the algorithms, a 300 Mhz PC

is used. It has a level-two 512 Ko ahe memory and

a 128 Mo RAM. The simulation software uses diret

aess to a standard graphis board. The preorder

and postorder traversals of the Interval Treap use re-

ursive algorithms. A 640�480 image (307,200 pixels)

1

is used. The data strutures have 307,200 dexels, Z-

elements and time-elements when initialized. For an

image of a given size, the number of elements varies

aording to several parameters: the size and the

shape of the stok, the number of toolpaths and the

mahining strategy used, and �nally the view point.

A dexel and a time-element use 12 otets

First, we study the memory and the time required

to reate the Interval Treap. The reation of the ex-

tended z-bu�er takes 99.42 s. The onstrution of

the Interval Treap requires 341.13 s. These times do

not take into aount the display time. The Interval

Treap needs 3.43 times more time to be set up than

the data struture of the linked list.

The results related to the memory used are pre-

sented in table 1. At the end of the simulation, the

Interval Treap oupies 10 times more memory spae

than all the neessary dexels for the implementation

of the extended z-bu�er as linked list. But if we on-

sider the z-trae and the time-trae, the extended z-

bu�er an be reonstruted and/or rapidly displayed

for any given stage of the simulation. The memory

oupation is also 4.46Mo + 45.64Mo + 24.88Mo, so

74.88Mo. With the Interval Treap, the memory ou-

pation is only 44.59Mo, and any given stage an also

be reonstruted and/or displayed and we save 40 %

memory o�.

We now study the reonstrution times of senes

without aess to the graphis board. Considering the

large number of elementary positions present in the

simulation (44,084), we list simulation senes whih

orrespond to arbitrary elementary positions. For ex-

ample, the sene in whih the part has already un-

dergone a tenth of the simulation is listed in the �rst

olumn. This orresponds to position 4,408 when the

extended z-bu�er is onstruted. To simplify matters,

let's say that this simulation stage is alled \stage

1

10

". For the onstrution of the extended z-bu�er,

the time required for stages

1

10

,

1

4

,

1

2

,

3

4

and the last

stage is respetively 10.88 s, 26.03 s, 50.14 s, 74.20 s

and 99.42 s, that is equivalent to several ten seonds.

1

For this spei�ed view, one pixel represents a 0.26 mm length on the part
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Figure 5: Reonstrution of the sene (time in seonds)
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Figure 6: Di�erent Interval Treaps

In �gure 5, the time required is listed for any given

stage: for the setting up of the display of the sene

with the time-trae and the Interval Treap (IT(dis)),

and for the reonstrution of the sene with the z-

trae and the Interval Treap (IT(re)). These times

are now equivalent only to tenths of seond. To dis-

play any given sene, the Interval Treap uses in the

worst ase 3.7 more time than the t-trae, that is only

2.2% more than the time neessary to onstrut the

same sene with the extended z-bu�er. The display

of the sene with the Interval Treap is less quik than

with the t-trae: in fat, the traversal of empty leaves

either dereases or inreases the time, depending on

the spei�ed point of view.

To reonstrut any given sene, the Interval Treap

uses in the best ase 30% less time than the reon-

strution of the same sene with the z-trae. The

Interval Treap uses in the worst ase only 40% more

than the z-trae. The z-trae data struture has no

empty leaves, that is why the reonstrution with the

Interval Treap is more time onsuming for the senes

at the end of the simulation. Although, the Inter-

val Treap uses in the worst ase only 2.02% of the

time neessary to onstrut the same sene with the

extended z-bu�er.

It is interesting to notie that only 4 reonstru-

tions of any sene at the end of the simulation are

neessary to validate the Interval Treap data stru-

ture.

In �gure 6, we listed di�erent possible models for

Interval Treap. The balane of an Interval Treap de-

pends on several parameters, espeially the point of

view (orientation of the workpiee in the image spae)

and the mahining strategy used. For example, the

unbalaned trees of models 1 and 3 are obtained with

the zigzag mahining strategy. The balaned trees of

model 2 ould be reated with a mahining strategy

suh as parallel ontour. Let's take the example of

the unbalaned Interval Treap of model 1. We now

study the performanes of this new implementation

for the extended z-bu�er on this tree whih is not the

best ase for our data struture. The times for the

reonstrution and the display of any given sene by

an IT are very lose. The unbalane is also shown by

these times. Indeed, to reonstrut an IT at stage i of

the simulation from a balaned IT of model 2, all the

branhes of this tree have to be traversed, so many

omebaks must be exeuted. On the ontrary, for

the display of the same sene i of the simulation, only

a partial traversal is neessary up to the right node

(whih was the last leaf of the IT at stage i). For the

unbalaned trees of models 1 and 3, the omebaks

are fewer but most branhes an be seen in the whole

traversal ompared to the partial traversal. For the



reonstrution of any given sene, espeially for the

sene at the beginning and at the middle of the simu-

lation, the traversal of an unbalaned Interval Treap

of model 1 or 3 an be faster than the traversal of a

balaned Interval Treap beause fewer branhes must

be treated.

6 Analysis of the algorithm

The analysis of the algorithm refers to two di�er-

ent designs for the performane study of a program.

The �rst approah onsists in determining the per-

formanes of any algorithm by onsidering the worst

ase. For any given algorithm solving a spei� prob-

lem, a lower limit an be found, and this limit or-

responds to the performanes of the algorithm in the

worst ase. Thanks to this approah, it is possible for

instane to say that the searh time for a linked list

of N elements is in O(N) in the worst ase. The se-

ond approah onsists in haraterizing in a rigorous

way the performanes of an algorithm by analyzing

the best ase, the average ase and the worst ase

with methods making it possible to re�ne the prei-

sion. This approah relies on the preise enumeration

of the di�erent on�gurations of a data struture.

We adopt the seond approah. Thanks to the

alulation and the evaluation of the average height

(or level), the balane of the Interval Treap an be

haraterized and lassi�ed as well as possible. In-

deed, in the best ase, a tree of N nodes is balaned.

Its maximal height is log

2

(N) and the operations of

insertion and searh an be implemented in log

2

(N)

time. In the worst ase, the tree is ompletely un-

balaned (one node per level). Its maximal height is

N , and the operations of insertion and searh an be

implemented in N time, this worst ase struture is

no more eÆient than a regular linked list. So, the

time required for the onstrution of the IT, and the

time required for the display and the reonstrution

of a spei� sene of the simulation depend on the bal-

ane of the Interval Treap. Let's take the example of

the model 1 tree in �gure 6: it is an Interval Treap ob-

tained during the simulation. This tree has 38 nodes,

this is about the average number of nodes of the In-

terval Treap used in the simulation. In the best ase,

the tree ould be balaned. The average height for a

balaned searh tree of 38 nodes is H

balaned

= 3:5.

In the worst ase, the tree ould be ompletely un-

balaned. The average height for a ompletely unbal-

aned searh tree of N nodes is H

unbalaned

=

N�1

2

,

so for a tree of 38 nodes H

unbalaned

= 18:5. For

the average ase, Segewik studied the binary searh

trees onstruted from a random drawing for their

key values [12℄. He obtained the following formula

about the average height for suh a tree of N nodes:

H

rand

= 4:311 � ln(N) + o(ln(N)), so for a tree of

38 nodes H

rand

= 15:68. The average height alu-

lated on the Interval Treap of model 1 in �gure 6 is:

H

IT1

= 9:11. This value is about twie as muh as

for a ompletely unbalaned tree, and it approahes

the average height of a balaned tree. Using the In-

terval Treap as a new data struture for the extended

z-bu�er is thus interesting, even in a ase suh as the

unfavourable example studied in the previous para-

graph.

7 Conlusion

To rereate a given sene in NC milling simulation

using the extended z-bu�er, we have presented a new

single data struture based on interval binary trees:

the Interval Treap. These searh trees an quikly dis-

play and/or reonstrut any given sene of the simu-

lation. We have also studied the performanes of this

new data struture for the extended z-bu�er in two

di�erent ways. The experimental evaluation showed

that even if the setting-up of Interval Treaps is some-

what time onsuming, this extra time is reovered if

several senes at the end of the simulation are reon-

struted suessively. Moreover, this method is om-

patible with the standard graphis board, the memory

apaity and the proessing speed of PCs assembled

today. Thanks to the analysis of the algorithm, it is

then possible to haraterize the balane of the Inter-

val Treap by studying the average heights. The latter

are lose to the best ase of balaned trees. The In-

terval Treap data struture seems to be well adapted

for a omplete use of the extended z-bu�er.
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