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Abstra
t

In this paper, we propose an improvement of the ex-

tended z-bu�er. This obje
t representation is well

adapted to the NC ma
hining simulation as pra
ti
ed

in the workshops. The data stru
ture most often

used to implement the extended z-bu�er is the linked

list, but it does not keep in memory the history of

the 
onstru
tion of the workpie
e. Thus, to go ba
k

in the visualization pro
ess, it is ne
essary to replay

the simulation from the �rst stage of the ma
hining.

Also, to obtain an intera
tive simulation, we propose

to implement the extended z-bu�er as an \Interval

Treap" (Treap: tree-heap). This new data stru
ture,

based on the interval binary sear
h trees, 
ontains

all the information ne
essary to display and to re-


onstru
t again the extended z-bu�er at any given

moment of the simulation. The experimental and

theoreti
al evaluation shows how the use of Interval

Treaps is 
ompatible with the memory 
apa
ity and

the pro
essing speed of standard PC hardware, by

o�ering new prospe
ts to the extended z-bu�er like

the setting up of an animation.

Keywords: extended z-bu�er, binary sear
h tree,

NC milling simulation, geometri
 modelling, perfor-

man
e study.

1 Introdu
tion

In this paper, we aim to improve the data stru
ture

of the extended z-bu�er. The latter is used in NC

milling simulation pra
ti
ed in the workshops with

the standard PC graphi
s hardware. With the sim-

ulation, the ma
hine operator tries to �nd out the

errors whi
h may appear during a real ma
hining. He

needs to know where, when and how these errors ap-

pear so as to measure their impa
t and thus �nd ad-

equate solutions. The best way of a
hieving this is

to perform an intera
tive simulation where the oper-

ator 
an visualize not only the �nished part but also

the di�erent phases of the ma
hining. In order to

follow the a
tual material removal and to visualize

a spe
i�
 moment of the ma
hining, two possibilities

are available. It is �rst possible to exe
ute again the

simulation from the beginning to the 
hosen moment,

however, this is rather time 
onsuming. The se
ond

solution 
onsists \in gluing" together the virtual part

and virtual 
hips obtained and memorized during the

simulation. To visualize faster a spe
i�
 moment of

the ma
hining, we 
hoose to fo
us on the se
ond solu-

tion whi
h allows the di�erent ma
hining phases to be

stored. Several methods have already been developed

in the �eld of ma
hining simulation. Some methods

are based on 3 D models like the CSG method and

the B-Rep whi
h both require at least an O(n

3

) ex-

e
ution time [1℄. However, they are time-
onsuming

and also unusable when simulating the ma
hining of

many thousand tool positions. Other methods based

on image spa
e su
h as the extended z-bu�er [2℄ and

the Ray-Representation [3℄ are well adapted to this

appli
ation. In this paper, we fo
us on the extended

z-bu�er te
hnique whi
h takes only an expe
ted time

in O(n) and gives a user-friendly animation [1℄.

In a previous paper, we already introdu
ed two

data stru
tures, the z-tra
e and the t-tra
e, to 
ome

ba
k to any spe
i�
 moment of the simulation [4℄. We

introdu
e now the notion of \Interval Treap" in the

extended z-bu�er. This new data stru
ture memo-

rizes all the intervals obtained during the whole sim-

ulation. The \Interval Treap" allows not only to go

ba
k qui
kly to a spe
i�
 moment of the simulation

but also to model the part, the simulation 
an then

be 
ontinued from a modi�ed part. The originality of

our work 
onsists in using this new single data stru
-

ture to implement the extended z-bu�er in the �eld

of 
omputer graphi
s, and also in studying the perfor-

man
es of su
h a data stru
ture not only in relation

to the 
hara
teristi
s of the standard PC hardware,

but also from an analyti
al point of view.

2 Di�erent possible data stru
-

tures for the extended z-

bu�er

Van Hook [2℄ was the �rst s
ientist to �x a view

point in the image spa
e and to de�ne an extended

z-bu�er whi
h 
ontains depth elements, 
alled dexels.

A sorted list of dexels is then asso
iated with ea
h

pixel. A dexel represents a re
tangular solid, and 
or-

responds to a part of the part behind a pixel for a �xed

view point. With the extended z-bu�er an obje
t 
an

be displayed in a spe
i�ed dire
tion [5℄. The part and

the tool are represented by extended z-bu�ers. The

extended z-bu�er stru
ture of the part, and not that
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Figure 1: Corresponden
e between the interval 
reated at stage i and the node of the Interval Treap

of the tool, will be modi�ed as the tool merely re-

moves material from the part during ma
hining. The

boolean operations require two extended z-bu�ers [6℄:

at ea
h elementary position the extended z-bu�er of

the part and the extended z-bu�er of the tool have to

be 
ompared dexel by dexel. As a list of dexels is asso-


iated with ea
h pixel, a dexel 
an be interpreted geo-

metri
ally as a segment of a given ray in the spe
i�ed

viewing dire
tion. With the extended z-bu�er te
h-

nique, boolean subtra
tion operations 
an be simply

performed on one-dimensional line segment interse
-

tions. A dexel 
ontains graphi
, spatial and model-

ing information about its near depth value (NearZ),

its far depth value (FarZ), its 
olor and a pointer to

the following dexel. The material is bounded by the

NearZ and the FarZ. Algorithmi
ally, the 
omparison

between the di�erent extended z-bu�ers is performed

by operations on sorted lists. The linked lists seem to

be the easiest data stru
ture available to implement

the extended z-bu�er, and the single data stru
ture

used usually in the literature. Indeed, the required

dexel is qui
kly found by moving from one element

to another. However, this implementation has some

drawba
ks su
h as the sear
h time of an element in a

linked list of n elements whi
h is in the worst 
ase in

O(n): to rea
h a required element, it is thus ne
essary

to go through all the elements pre
eding it in the list

one by one.

Moreover, the extended z-bu�er proposed by Van

Hook does not keep in memory the history of the sim-

ulation. Indeed, when a dexel is deleted from the ex-

tended z-bu�er, it is also deleted from the linked list.

This deletion is de�nitive and the information about

this dexel will not be hen
eforth present any more in

memory. In the same way, when a dexel is modi�ed,

its NearZ or FarZ is modi�ed, but the former value

is not dire
tly a

essible any more. It might also be

diÆ
ult to go ba
k to a spe
i�
 moment of the sim-

ulation, be
ause some data must be re
omputed, and

this will be time 
onsuming.

In a re
ent paper, we de�ned the z-tra
e and the t-

tra
e as an extension of the extended z-bu�er. The z-

tra
e keeps in memory every Z (NearZ and FarZ) and

their parameters. It allows to re
reate any given s
ene

i of the simulation by re
onstru
ting the extended z-

bu�er as it was at this s
ene i. As the displayed pixel

is the last FarZ of the extended z-bu�er, the t-tra
e

memorizes only the last FarZ and its parameters. It

allows to display a s
ene of simulation by �nding the


olor of the pixels. The z-tra
e and the t-tra
e are

independent. They are built during simulation, and

thus memorize the evolution of the extended z-bu�er

step by step. The linked list is the data stru
ture used

for the z-tra
e and for the t-tra
e. The originality of

this paper 
onsists in using a new single data stru
ture

whi
h stores all the data 
al
ulated during simulation,

and in speeding up the pro
essing of the simulation


ompared with an implementation by linked list .

The binary sear
h tree (BST) data stru
ture al-

lows a fast a

ess to a spe
i�
 element among a great

number of elements memorized during simulation: in-

deed, the time ne
essary to rea
h an element x of the

tree is proportional to the depth of x in this tree [7℄.

In the worst 
ase, the sear
h time of an element in

a balan
ed tree of n elements is O(log n). To keep

in memory all the modi�
ations of the extended z-

bu�er, it is ne
essary to store two types of data: �rst,

the spa
e data 
orresponding to the Z-values (NearZ

and FarZ), then the time data 
orresponding to the


reation stage of the Z-values in the data stru
ture.

As the extended z-bu�er 
an be simply modeled as

a segment [NearZ,FarZ℄ in one-dimensional spa
e, we

�rst thought of using an interval tree data stru
ture.

A possible representation is the \span spa
e" pro-

posed by Livnat, Shen and Johnson, who use a kd-

tree and repla
e intervals by points [8℄. An interval

I = [a

i

; b

i

℄ with a

i

� b

i

is represented by a point in

a two-dimension spa
e with a

i

as X-
oordinate and

b

i

as Y-
oordinate. By looking for the points su
h

as x � q and y � q, all the intervals whi
h 
ontain

the q value are found. With this method, however,

the notion of time is forgotten, espe
ially the moment

the dexel appears in the extended z-bu�er 
annot be

memorized.

We would like to use a data stru
ture whi
h mem-

orizes two types of data: in spa
e and in time. In the

Cartesian trees introdu
ed by Vuillemin, every node

has two keys (x,y) [9℄. The value of the x-key satis�es

the property of the binary sear
h trees: the value of

the x-key of a parent node is bigger than the value of

the x-key of his left 
hild and smaller than the value

of the x-key of his right 
hild. The value of the y-
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Figure 2: Boolean di�eren
e operation between two intervals: in
uen
e on the Interval Treap

key satis�es the property of \heap-order": the value

of the y-key of a parent node is always smaller than

the value of the y-key of his 
hildren nodes [7℄. These

binary sear
h trees are unbalan
ed. On average, the

exe
ution time of the basi
 operations of insertion and

sear
h for an element in a Cartesian tree of n elements

is O(log(n)), and in the worst 
ase, if the tree is 
om-

pletely unbalan
ed, it 
an a
hieve O(n). To obtain

balan
ed Cartesian trees, it is possible to repla
e y-

key value by a random value whi
h allows to balan
e

the tree during its setting-up. Treaps (tree and heap)

are obtained, they are balan
ed binary sear
h trees


onstru
ted randomly [10, 11℄. In our appli
ation, we

do not have random values, but we memorize an in-

terval [NearZ, FarZ℄ by storing two Z-values key and

one value key indexed in time whi
h memorize the

moment of appearan
e of a new interval in the data

stru
ture. We thus 
reate a new data stru
ture 
alled

\Interval Treap" whi
h 
ontains an interval values and

a time-value and allows to memorize all the modi�
a-

tions undergone by the z-bu�er during the simulation.

3 Interval Treap: a new data

stru
ture

We de�ne an Interval Treap (IT) as a interval binary

sear
h tree indexed in time but unbalan
ed. It keeps

in memory information about new intervals 
reated

from su

essive operations on an initial interval: In-

terval Treap is thus 
omposed of \superimposed inter-

vals". The basi
 element of Interval Treap is a node

whi
h represents an interval that appeared at stage i.

It 
ontains the following data: two Z-values, and one

time-value. A Z-value 
alled Z

min

limits the interval

by its minimal value: in the graphi
 representation of

the node, this value is put on the left (�gure 1). A

Z-value 
alled Z

max

limits the interval by its maximal

value: in the graphi
 representation of the node, this

value is put on the right (�gure 1). The time-value


orresponds to the moment when the interval appears

in the data stru
ture (
alled 
reation stage). In the

graphi
 representation of the node, this value is put

on �gure 1 below the Z-values.

The Interval Treap is an interval binary tree. In-

deed, a node 
an have at most two 
hildren be
ause

modi�
ations 
an take pla
e only on a Z

min

or on a

Z

max

, and when an interval is modi�ed, 
hildren are

added to the node representing this interval. If the

Z

min

is modi�ed, a new left 
hild will be 
reated, if

the Z

max

is modi�ed, it will be a new right 
hild. If a


hild does not exist, the node points towards NIL. A

leaf is a node where both 
hildren pointers are NIL.

The Interval Treap 
an be updated by studying

the di�erent substra
tion boolean operations between

two intervals whi
h are the boolean operations used

in ma
hining.

Modi�
ation of an interval by its Z

min

(
ase 1

in �gure 2)

If an interval is redu
ed by its front, then the Z

min

-

value is modi�ed. By 
onvention, the Z

min

is the

value put on the left in the node. To show the dele-
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Extended z-buffer at stage i = 7

1 2 3 4 5 6 7 8 9 10 11 12 : dexel Z0-Z1 created at stage i

leaves
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Figure 3: Example of Interval Treap and extended z-bu�er

tion of Z

min

from the parent interval, the pointer of its

left 
hild is now towards NIL. A new Z

min

appears

in the data stru
ture and a new interval is 
reated.

To represent this new interval in the data stru
ture,

a new right 
hild node is 
reated. Its Z

min

-value is

the new Z

min

-value. Its Z

max

-value is the Z

max

-value

of the parent node. Its time-value is also the present

stage n.

Modi�
ation of an interval by its Z

max

(
ase 2

in �gure 2)

This is the same 
ase as previously where Z

min

is re-

pla
ed by Z

max

, and Z

max

repla
ed by Z

min

.

Creation of an interval (
ase 3 in �gure 2)

When a new interval appears in the data stru
ture, a

new Z

min

and a new Z

max

are 
reated. The bound-

aries of the parent interval are not 
hanged. The 
re-

ation of a new interval is re
e
ted on the data stru
-

ture by the 
reation of two new 
hildren nodes: a

right 
hild and a left 
hild whose values are respe
-

tively those of the previous 
ase 1 and 
ase 2.

Deletion of an interval (
ase 4 in �gure 2)

The deletion of an interval is a diÆ
ult stage to model.

To show that an interval is removed at stage i, only

one 
hild node must be 
reated to represent this stage

i. By 
onvention, the node 
reated will be a left 
hild

whi
h will have the same values for Z

min

and Z

max

.

This node is 
alled \empty leaf" of the Interval Treap.

Indeed, there will be no more possible modi�
ation

from this node, it is thus a leaf whi
h is des
ribed

as empty be
ause the Z

min

-value and the Z

max

-value

are equal.

4 Using the Interval Treap with

the extended z-bu�er

4.1 The Interval Treap: a 
omplete

data stru
ture for the extended z-

bu�er

The Interval Treap is a data stru
ture well adapted

for the extended z-bu�er. The information about the

dexel is 
ontained in the basi
 element of the Interval

Treap. The key value NearZ 
orresponds to the Z

min

-

value. The value FarZ 
orresponds to the Z

max

-value.

The time-value de�nes the moment a dexel appears in

the extended z-bu�er during the simulation.

When a dexel is modi�ed, 
hildren nodes are added

to the father node modelling the dexel. These 
hildren

then be
ome the new leaves of the tree. The a
tive

dexels of the extended z-bu�er are the leaves of the

Interval Treap. The leaves of an Interval Treap are

arranged by order. To traverse the non-empty leaves

of an Interval Treap from left to right is equivalent

to traversing the dexels of the extended z-bu�er ex-

tended in the same order(�gure 3). The intermediate

nodes of the Interval Treap are a part of the history

of the extended z-bu�er, be
ause at a given time of

simulation these nodes were also the leaves of the tree,

so they were a
tive dexels of the extended z-bu�er.

An Interval Treap memorizes all the modi�
ations

undergone by the extended z-bu�er during the simu-

lation. It thus o

upies in memory more spa
e than a

simple linked list, but its fun
tionalities are at the

same time those of the extended z-bu�er and the

tra
es. Simulations will show that the memory o
-
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Figure 4: Update-No Update of a dexel


upied by any Interval Treap is �nally less signi�-


ant than the whole memory o

upied by two or three

linked lists; one modelling the extended z-bu�er, and

the other(s) modelling the tra
e(s) asso
iated with the

extended z-bu�er.

4.2 Updating of the Interval Treap

During the update of an Interval Treap, it is ne
es-

sary to �nd the leaf (
ase 1 in �gure 4) or the leaves

(
ase 2 of the �gure 4) 
orresponding to the dexels

to be modi�ed. As the leaves of the Interval Treap

are arranged by order, a postorder or preorder

traversal is used. To avoid traversing the whole

tree for every new stage, we listed two 
ases (
ase 3

and 4 in �gure 4) for whi
h the dexel does not have

any modi�
ations.

� 
ase 3: if the dexel of the tool pre
edes the dexel

of the part without overlapping it. This 
on-

dition 
an be summarized by the following in-

equality:

FarZ of the tool � NearZ of the part

� 
ase 4: if the dexel of the part pre
edes the

dexel of the tool without overlapping it. This


ondition 
an be summarized by the following

inequality:

FarZ of the part � NearZ of the tool

A dexel will be modi�ed if and only if 
ase 3 AND


ase 4 are not satis�ed. A dexel will not be modi�ed

if and only if 
ase 3 OR 
ase 4 is satis�ed. Thus, a

dexel 
ould be modi�ed if and only if it veri�es the

following 
ondition (1):

FarZ of the tool > NearZ of the part

AND

FarZ of the part > NearZ of the tool

How 
an this 
ondition modify the traversal of

the Interval Treap?

At a given moment of the simulation, all the nodes of

the Interval Treap have been a leaf, i.e an a
tive dexel

of the extended z-bu�er. It is ne
essary for every node

to verify if 
ondition (1) is observed.

� if (1) is TRUE: the traversal 
ontinues be
ause

the following nodes (dexels) are sus
eptible to

be modi�ed.

� if (1) is FALSE: the traversal of this bran
h of

the Interval Treap is stopped momentarily. In-

deed, if a father node (dexel) does not verify


ondition (1) then its 
hildren nodes (\
hildren

dexels") will not verify 
ondition (1) either.

Then, we want to determine in whi
h 
ase the traver-

sal is interrupted momentarily or de�nitely. At ea
h

stage, the extended z-bu�er of the part and the ex-

tended z-bu�er of the tool have to be 
ompared dexel

by dexel. The updating on the dexels of the extended

z-bu�er of the part will not be possible any more

when:

Far Z of the part � Far Z of the tool (2)

For the extended z-bu�er as an Interval Treap, the

traversal of the tree will be stopped de�nitely in ei-

ther of the following 
ases:

� if a leaf has just been 
reated and:

New FarZ of the part � FarZ of the tool.

� if 
ondition (1) is FALSE and if (2) is TRUE.

4.3 Use of the Interval Treap

4.3.1 Display of the 
urrent 
olor on the

s
reen

The visible 
olor on the s
reen is the 
olor of the last

FarZ of the extended z-bu�er. When the z-bu�er uses

the data stru
ture of Interval Treap, only the last non

empty leaf (NearZ 6= FarZ), that is the leaf on the

right in the tree, is interesting. That is why, for the

display of the 
olor of the 
urrent extended z-bu�er,

the traversal of the tree will be a postorder

traversal (from right 
hildren to left 
hildren). If all

the leaves are empty, the required 
olor is the 
olor of

the ba
kground.



Pixels z-bu�er z-tra
e time interval

Toolpaths of tra
e treap

(Positions) the part Created Deleted All the Z Time IT

dexels dexels dexels elements elements nodes

17,108 121,067 83,217 52,427 390,417 2,991,055 2,174,530 2,922,415

(44,084) 0.96Mo 0.60Mo 4.46Mo 45.64Mo 24.88Mo 45.66Mo

Table 1: Memory o

upation.

4.3.2 Use of Interval Treap as a history of

the extended z-bu�er

Thanks to this data stru
ture, the ma
hining 
an start

again from any stage of the simulation. To re
on-

stru
t the Interval Treap of the extended z-bu�er as

it was at stage i of the simulation, it is ne
essary to

\
ut" 
orre
tly the tree. A preoder or postorder 
an

be indi�erently 
hosen be
ause all the bran
hes of the

tree must be examined. For ea
h rami�
ation of the

tree, the traversal is stopped in either of the following


ases:

� if the 
urrent node veri�es the following inequal-

ities:

(
reation stage of the left 
hild > stage i)

AND

(
reation stage of the right 
hild > stage i)

The pointers of the 
urrent node towards its

right and left 
hildren are initialized with NIL.

� if the 
urrent node is a leaf (node with neither

right nor left 
hild).

On
e the Interval Treap is re
onstru
ted, two appli
a-

tions 
an be envisaged. Thanks to this data stru
ture,

it is �rst possible to display on the s
reen the 
olor of

the pixel at stage i (see previous paragraph). Then,

the extended z-bu�er 
an undergo new operations in

order to play another simulation.

5 Experimental evaluation of

the algorithm

Let's take the example of the ma
hining simulation of

a small mould. Ma
hining this mould requires 17,108

toolpaths - most of them being 0.5 mm long - as well

as a 107�72�33 mm sto
k and a 3 mm tool. The

ma
hining takes 1 h 30 min with a three-axis milling

ma
hine. To evaluate the algorithms, a 300 Mhz PC

is used. It has a level-two 512 Ko 
a
he memory and

a 128 Mo RAM. The simulation software uses dire
t

a

ess to a standard graphi
s board. The preorder

and postorder traversals of the Interval Treap use re-


ursive algorithms. A 640�480 image (307,200 pixels)

1

is used. The data stru
tures have 307,200 dexels, Z-

elements and time-elements when initialized. For an

image of a given size, the number of elements varies

a

ording to several parameters: the size and the

shape of the sto
k, the number of toolpaths and the

ma
hining strategy used, and �nally the view point.

A dexel and a time-element use 12 o
tets

First, we study the memory and the time required

to 
reate the Interval Treap. The 
reation of the ex-

tended z-bu�er takes 99.42 s. The 
onstru
tion of

the Interval Treap requires 341.13 s. These times do

not take into a

ount the display time. The Interval

Treap needs 3.43 times more time to be set up than

the data stru
ture of the linked list.

The results related to the memory used are pre-

sented in table 1. At the end of the simulation, the

Interval Treap o

upies 10 times more memory spa
e

than all the ne
essary dexels for the implementation

of the extended z-bu�er as linked list. But if we 
on-

sider the z-tra
e and the time-tra
e, the extended z-

bu�er 
an be re
onstru
ted and/or rapidly displayed

for any given stage of the simulation. The memory

o

upation is also 4.46Mo + 45.64Mo + 24.88Mo, so

74.88Mo. With the Interval Treap, the memory o

u-

pation is only 44.59Mo, and any given stage 
an also

be re
onstru
ted and/or displayed and we save 40 %

memory o�.

We now study the re
onstru
tion times of s
enes

without a

ess to the graphi
s board. Considering the

large number of elementary positions present in the

simulation (44,084), we list simulation s
enes whi
h


orrespond to arbitrary elementary positions. For ex-

ample, the s
ene in whi
h the part has already un-

dergone a tenth of the simulation is listed in the �rst


olumn. This 
orresponds to position 4,408 when the

extended z-bu�er is 
onstru
ted. To simplify matters,

let's say that this simulation stage is 
alled \stage

1

10

". For the 
onstru
tion of the extended z-bu�er,

the time required for stages

1

10

,

1

4

,

1

2

,

3

4

and the last

stage is respe
tively 10.88 s, 26.03 s, 50.14 s, 74.20 s

and 99.42 s, that is equivalent to several ten se
onds.

1

For this spe
i�ed view, one pixel represents a 0.26 mm length on the part
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Figure 6: Di�erent Interval Treaps

In �gure 5, the time required is listed for any given

stage: for the setting up of the display of the s
ene

with the time-tra
e and the Interval Treap (IT(dis)),

and for the re
onstru
tion of the s
ene with the z-

tra
e and the Interval Treap (IT(re
)). These times

are now equivalent only to tenths of se
ond. To dis-

play any given s
ene, the Interval Treap uses in the

worst 
ase 3.7 more time than the t-tra
e, that is only

2.2% more than the time ne
essary to 
onstru
t the

same s
ene with the extended z-bu�er. The display

of the s
ene with the Interval Treap is less qui
k than

with the t-tra
e: in fa
t, the traversal of empty leaves

either de
reases or in
reases the time, depending on

the spe
i�ed point of view.

To re
onstru
t any given s
ene, the Interval Treap

uses in the best 
ase 30% less time than the re
on-

stru
tion of the same s
ene with the z-tra
e. The

Interval Treap uses in the worst 
ase only 40% more

than the z-tra
e. The z-tra
e data stru
ture has no

empty leaves, that is why the re
onstru
tion with the

Interval Treap is more time 
onsuming for the s
enes

at the end of the simulation. Although, the Inter-

val Treap uses in the worst 
ase only 2.02% of the

time ne
essary to 
onstru
t the same s
ene with the

extended z-bu�er.

It is interesting to noti
e that only 4 re
onstru
-

tions of any s
ene at the end of the simulation are

ne
essary to validate the Interval Treap data stru
-

ture.

In �gure 6, we listed di�erent possible models for

Interval Treap. The balan
e of an Interval Treap de-

pends on several parameters, espe
ially the point of

view (orientation of the workpie
e in the image spa
e)

and the ma
hining strategy used. For example, the

unbalan
ed trees of models 1 and 3 are obtained with

the zigzag ma
hining strategy. The balan
ed trees of

model 2 
ould be 
reated with a ma
hining strategy

su
h as parallel 
ontour. Let's take the example of

the unbalan
ed Interval Treap of model 1. We now

study the performan
es of this new implementation

for the extended z-bu�er on this tree whi
h is not the

best 
ase for our data stru
ture. The times for the

re
onstru
tion and the display of any given s
ene by

an IT are very 
lose. The unbalan
e is also shown by

these times. Indeed, to re
onstru
t an IT at stage i of

the simulation from a balan
ed IT of model 2, all the

bran
hes of this tree have to be traversed, so many


omeba
ks must be exe
uted. On the 
ontrary, for

the display of the same s
ene i of the simulation, only

a partial traversal is ne
essary up to the right node

(whi
h was the last leaf of the IT at stage i). For the

unbalan
ed trees of models 1 and 3, the 
omeba
ks

are fewer but most bran
hes 
an be seen in the whole

traversal 
ompared to the partial traversal. For the



re
onstru
tion of any given s
ene, espe
ially for the

s
ene at the beginning and at the middle of the simu-

lation, the traversal of an unbalan
ed Interval Treap

of model 1 or 3 
an be faster than the traversal of a

balan
ed Interval Treap be
ause fewer bran
hes must

be treated.

6 Analysis of the algorithm

The analysis of the algorithm refers to two di�er-

ent designs for the performan
e study of a program.

The �rst approa
h 
onsists in determining the per-

forman
es of any algorithm by 
onsidering the worst


ase. For any given algorithm solving a spe
i�
 prob-

lem, a lower limit 
an be found, and this limit 
or-

responds to the performan
es of the algorithm in the

worst 
ase. Thanks to this approa
h, it is possible for

instan
e to say that the sear
h time for a linked list

of N elements is in O(N) in the worst 
ase. The se
-

ond approa
h 
onsists in 
hara
terizing in a rigorous

way the performan
es of an algorithm by analyzing

the best 
ase, the average 
ase and the worst 
ase

with methods making it possible to re�ne the pre
i-

sion. This approa
h relies on the pre
ise enumeration

of the di�erent 
on�gurations of a data stru
ture.

We adopt the se
ond approa
h. Thanks to the


al
ulation and the evaluation of the average height

(or level), the balan
e of the Interval Treap 
an be


hara
terized and 
lassi�ed as well as possible. In-

deed, in the best 
ase, a tree of N nodes is balan
ed.

Its maximal height is log

2

(N) and the operations of

insertion and sear
h 
an be implemented in log

2

(N)

time. In the worst 
ase, the tree is 
ompletely un-

balan
ed (one node per level). Its maximal height is

N , and the operations of insertion and sear
h 
an be

implemented in N time, this worst 
ase stru
ture is

no more eÆ
ient than a regular linked list. So, the

time required for the 
onstru
tion of the IT, and the

time required for the display and the re
onstru
tion

of a spe
i�
 s
ene of the simulation depend on the bal-

an
e of the Interval Treap. Let's take the example of

the model 1 tree in �gure 6: it is an Interval Treap ob-

tained during the simulation. This tree has 38 nodes,

this is about the average number of nodes of the In-

terval Treap used in the simulation. In the best 
ase,

the tree 
ould be balan
ed. The average height for a

balan
ed sear
h tree of 38 nodes is H

balan
ed

= 3:5.

In the worst 
ase, the tree 
ould be 
ompletely un-

balan
ed. The average height for a 
ompletely unbal-

an
ed sear
h tree of N nodes is H

unbalan
ed

=

N�1

2

,

so for a tree of 38 nodes H

unbalan
ed

= 18:5. For

the average 
ase, Segewi
k studied the binary sear
h

trees 
onstru
ted from a random drawing for their

key values [12℄. He obtained the following formula

about the average height for su
h a tree of N nodes:

H

rand

= 4:311 � ln(N) + o(ln(N)), so for a tree of

38 nodes H

rand

= 15:68. The average height 
al
u-

lated on the Interval Treap of model 1 in �gure 6 is:

H

IT1

= 9:11. This value is about twi
e as mu
h as

for a 
ompletely unbalan
ed tree, and it approa
hes

the average height of a balan
ed tree. Using the In-

terval Treap as a new data stru
ture for the extended

z-bu�er is thus interesting, even in a 
ase su
h as the

unfavourable example studied in the previous para-

graph.

7 Con
lusion

To re
reate a given s
ene in NC milling simulation

using the extended z-bu�er, we have presented a new

single data stru
ture based on interval binary trees:

the Interval Treap. These sear
h trees 
an qui
kly dis-

play and/or re
onstru
t any given s
ene of the simu-

lation. We have also studied the performan
es of this

new data stru
ture for the extended z-bu�er in two

di�erent ways. The experimental evaluation showed

that even if the setting-up of Interval Treaps is some-

what time 
onsuming, this extra time is re
overed if

several s
enes at the end of the simulation are re
on-

stru
ted su

essively. Moreover, this method is 
om-

patible with the standard graphi
s board, the memory


apa
ity and the pro
essing speed of PCs assembled

today. Thanks to the analysis of the algorithm, it is

then possible to 
hara
terize the balan
e of the Inter-

val Treap by studying the average heights. The latter

are 
lose to the best 
ase of balan
ed trees. The In-

terval Treap data stru
ture seems to be well adapted

for a 
omplete use of the extended z-bu�er.
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